This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceabilit...Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature.展开更多
为研究负载水平对FRP(纤维增强复合材料)约束混凝土柱峰值应力和峰值应变的影响,根据32个CFRP(碳纤维增强复合材料)约束混凝土圆柱构件和16个CFRP约束混凝土方柱构件的试验结果,引入负载影响因子,对J G Teng提出的CFRP约束混凝土柱峰值...为研究负载水平对FRP(纤维增强复合材料)约束混凝土柱峰值应力和峰值应变的影响,根据32个CFRP(碳纤维增强复合材料)约束混凝土圆柱构件和16个CFRP约束混凝土方柱构件的试验结果,引入负载影响因子,对J G Teng提出的CFRP约束混凝土柱峰值应力和峰值应变计算公式进行修正.在此基础上分析了CFRP约束混凝土柱构件轴向-侧向应变关系,以J G Teng本构模型为主动约束关系,建立了负载下CFRP约束混凝土应力-应变分析型模型.研究结果表明:模型理论曲线与试验曲线接近,修正后的峰值应力和峰值应变与试验结果较吻合,圆柱构件的误差约10%,方柱构件的误差在15%左右.展开更多
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
基金Project(04043076) supported by the Outstanding Youth Foundation for Scientific and Technological Research of Anhui Province, ChinaProject(2007jq1035) supported by the Scientific Research Projects for Young College Teachers of Anhui Province, China
文摘Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature.
文摘为研究负载水平对FRP(纤维增强复合材料)约束混凝土柱峰值应力和峰值应变的影响,根据32个CFRP(碳纤维增强复合材料)约束混凝土圆柱构件和16个CFRP约束混凝土方柱构件的试验结果,引入负载影响因子,对J G Teng提出的CFRP约束混凝土柱峰值应力和峰值应变计算公式进行修正.在此基础上分析了CFRP约束混凝土柱构件轴向-侧向应变关系,以J G Teng本构模型为主动约束关系,建立了负载下CFRP约束混凝土应力-应变分析型模型.研究结果表明:模型理论曲线与试验曲线接近,修正后的峰值应力和峰值应变与试验结果较吻合,圆柱构件的误差约10%,方柱构件的误差在15%左右.