期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluation method of cracking resistance of lightweight aggregate concrete 被引量:6
1
作者 季韬 张彬彬 +1 位作者 陈永波 庄一舟 《Journal of Central South University》 SCIE EI CAS 2014年第4期1607-1615,共9页
The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship betw... The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack. 展开更多
关键词 ceramsite type cracking resistance lightweight aggregate concrete evaluation index evaluation method
下载PDF
Hydration Process and Crack Tendency of Concrete Based on Resistivity and Restrained Shrinkage Crack 被引量:1
2
作者 MUAZU Bawa Samaila 魏小胜 WANG Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1026-1030,共5页
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth... Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location. 展开更多
关键词 concrete electrical resistivity restrained shrinkage crack setting time finite element simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部