In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through...In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.展开更多
in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st...in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.展开更多
A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plastici...A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage.展开更多
The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of pene...The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM). Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site.展开更多
Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models ...Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models with a single variable have an inherent dificulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners,and their mutual dependencies.In the current models that adopt two damage variables,the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa.This study presents a cyclic model established by extending an existing monotonic constitutive model.The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response.The proposed model,dubbed the enhanced concrete damage plasticity model(ECDPM),is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics.Unlike most prior studies on models in the same category,the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression.The performance of the model is observed to be satisfactory.Furthermore,the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.展开更多
The aim of this study is to formulate an appropriate free energy potential for inelastic behavior of concrete and construct an elastoplastic damage model on a more rational basis. The concept of effective plastic ener...The aim of this study is to formulate an appropriate free energy potential for inelastic behavior of concrete and construct an elastoplastic damage model on a more rational basis. The concept of effective plastic energy storage rates is proposed, which are conjugate forces of hardening variables in an undamaged configuration. Then an analogy between the evolution of harden- ing variables and that of a plastic strain is used to postulate the formulation of plastic free energy. This formulation reflects the specific characteristics of a certain plasticity model, so it can serve well as a thermodynamic link between plasticity and dam- age. By combination of the general formulation of free energy with the double hardening plasticity theory and two-parameter damage expression, a thermodynamically well-founded elastoplastic damage model for concrete is constructed. The operator split algorithm is emploved, and the numerical simulations a^ree well with a series of material tests.展开更多
A class of plastic-damage models for concrete require an unambiguous definition of cohesion in the yield criteria. For this reason, the Lubliner yield criterion has been adopted by many investigators and the commercia...A class of plastic-damage models for concrete require an unambiguous definition of cohesion in the yield criteria. For this reason, the Lubliner yield criterion has been adopted by many investigators and the commercial FE program Abaqus. As is well known, this criterion has achieved great success especially in plane stress states. In this paper, we are trying to extend it to triaxial compression stress states. First, a major limitation of the Lubliner criterion is analyzed. Then, a revised version of the Lubliner criterion is proposed, which shows appropriate properties over a wide range of stress states often encountered in engineering structures, and the predicted failure envelopes fit well with experimental data. For the concrete damaged plasticity model in Abaqus, a calibration strategy is suggested for uniformly confined concrete.展开更多
Fiber-reinforced polymer(FRP)bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion.Among the different types of FRP bars,basalt FRP(BFRP)bars have been used in ...Fiber-reinforced polymer(FRP)bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion.Among the different types of FRP bars,basalt FRP(BFRP)bars have been used in different structural applications and,herein,three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional(3-D)finite element analysis(FEA).The beams were tested in four-point bending.In the FEA the behavior of concrete is simulated using the^Concrete-Damaged Plasticity^^model offered in ABAQUS software.The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency.The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results.FEA results were compared to the test results with regard to failure load and crack patterns.Both the test results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12,where CSA S806-12 seems to overestimate the shear strength for two beams.展开更多
基金Supported by the National Natural Science Foundation of China(10272109)
文摘In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.
基金Supported by National Natural Science Foundation of China (No.50638030 and 50525825)National Science and Technology Support Program (No.2006BAJ13B02).
文摘in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.
文摘A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX10B_202Z)
文摘The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM). Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site.
基金The authors acknowledge the financial support of this study by the Austrian Marshall Plan Foundation,which funded the first author's short-term visit to UCLA during the course of this study.
文摘Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models with a single variable have an inherent dificulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners,and their mutual dependencies.In the current models that adopt two damage variables,the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa.This study presents a cyclic model established by extending an existing monotonic constitutive model.The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response.The proposed model,dubbed the enhanced concrete damage plasticity model(ECDPM),is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics.Unlike most prior studies on models in the same category,the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression.The performance of the model is observed to be satisfactory.Furthermore,the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.
基金supported by the National Natural Science Foundation of China(Grant Nos.51261120374,51108336 and 51378377)
文摘The aim of this study is to formulate an appropriate free energy potential for inelastic behavior of concrete and construct an elastoplastic damage model on a more rational basis. The concept of effective plastic energy storage rates is proposed, which are conjugate forces of hardening variables in an undamaged configuration. Then an analogy between the evolution of harden- ing variables and that of a plastic strain is used to postulate the formulation of plastic free energy. This formulation reflects the specific characteristics of a certain plasticity model, so it can serve well as a thermodynamic link between plasticity and dam- age. By combination of the general formulation of free energy with the double hardening plasticity theory and two-parameter damage expression, a thermodynamically well-founded elastoplastic damage model for concrete is constructed. The operator split algorithm is emploved, and the numerical simulations a^ree well with a series of material tests.
文摘A class of plastic-damage models for concrete require an unambiguous definition of cohesion in the yield criteria. For this reason, the Lubliner yield criterion has been adopted by many investigators and the commercial FE program Abaqus. As is well known, this criterion has achieved great success especially in plane stress states. In this paper, we are trying to extend it to triaxial compression stress states. First, a major limitation of the Lubliner criterion is analyzed. Then, a revised version of the Lubliner criterion is proposed, which shows appropriate properties over a wide range of stress states often encountered in engineering structures, and the predicted failure envelopes fit well with experimental data. For the concrete damaged plasticity model in Abaqus, a calibration strategy is suggested for uniformly confined concrete.
文摘Fiber-reinforced polymer(FRP)bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion.Among the different types of FRP bars,basalt FRP(BFRP)bars have been used in different structural applications and,herein,three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional(3-D)finite element analysis(FEA).The beams were tested in four-point bending.In the FEA the behavior of concrete is simulated using the^Concrete-Damaged Plasticity^^model offered in ABAQUS software.The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency.The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results.FEA results were compared to the test results with regard to failure load and crack patterns.Both the test results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12,where CSA S806-12 seems to overestimate the shear strength for two beams.