期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
1
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength concrete filled steel tubular (CFST) arch bridge Stiffening girder Fiber model beam element Construction process
下载PDF
Numerical analysis of ultimate strength of concrete filled steel tubular arch bridges 被引量:5
2
作者 谢旭 陈衡治 +1 位作者 李辉 宋世锐 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期859-868,共10页
The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for dete... The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed. 展开更多
关键词 concrete filled Steel tubular (CFST) Confined concrete Stress-strain relationship Ultimate strength
下载PDF
Experimental investigation of seismic performance of concrete-filled glass fiber reinforced polymer tubular columns
3
作者 关宏波 王清湘 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期37-43,共7页
A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance o... A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance of composite construction concrete filled glass fiber reinforced polymer (GFRP) tubular (CFFT) columns.The results indicated that concrete-filled GFRP tubular columns exhibit considerable influence over the seismic performance of columns by providing hoop confinement to the core concrete.The concrete filled GFRP tubular columns exhibit significant improvement over traditional RC columns in both ultimate strength and ductility.Different column-footing connection modes do not affect the strength and ductility of concrete filled GFRP tubular columns.The strength of concrete filled GFRP tubular columns under high axial compression load conditions are slightly increased,however,ductility declined. 展开更多
关键词 concrete columns CONNECTIONS DUCTILITY concrete filled GFRP tubular column SEISMIC
下载PDF
Experimental and Numerical Investigation of the Axial Behavior of Connection in CFST Diagrid Structures 被引量:12
4
作者 韩小雷 黄超 +1 位作者 季静 吴建营 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第S1期108-113,共6页
Concrete filled steel tubular (CFST) diagrid structures usually have connections intersected by four oblique CFST columns. In order to investigate the performance, capacity and failure mechanism of the connections, tw... Concrete filled steel tubular (CFST) diagrid structures usually have connections intersected by four oblique CFST columns. In order to investigate the performance, capacity and failure mechanism of the connections, two 1/5.5-scale specimens were tested under monotonic axial loading. The parameters in the study were the separation angle between columns. While the test was being conducted, the deflection, stress, failure pattern and capacity of the specimens were obtained and analyzed. In addition, the connection was analyzed using the general finite element analysis (FEA) software ABAQUS, with the purpose of investigating the mechanism, the weakness, the distribution of stress, and the bearing capacity of the connections. Experimental and numerical results indicate that the connecting separation angles resulted in the difference of failure modes and the mechanical behavior of the connections was similar to the behavior of CFST short columns. 展开更多
关键词 diagrid structure CONNECTION concrete filled steel tubular (CFST) nonlinear analysis finite element analysis (FEA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部