Steel-tube-confined concrete(STCC) targets are provided with excellent anti-penetration performance over semi-infinite concrete(SIC) targets since the steel tube imposes passive restraint on the in-filled concrete dur...Steel-tube-confined concrete(STCC) targets are provided with excellent anti-penetration performance over semi-infinite concrete(SIC) targets since the steel tube imposes passive restraint on the in-filled concrete during the penetration process. Grid STCC system with square steel tubes is a potential solution to protective structures. In this paper, experiments of 9-cell grid STCC targets penetrated by 12.7 mm Armor Piercing Projectile(APP) were performed. The influence of side length and thickness of steel tube,steel ratio and impact velocity on anti-penetration performance were taken into account. Additionally,single-cell square STCC targets were also designed and tested for comparison with the 9-cell grid STCC targets. Damage modes and parameters of the tested targets were measured and discussed. Moreover,the stiffness of radial confinement of grid STCC targets is achieved according to the elastic solution of infinite cylindrical shell in Winkler medium. Furthermore, the penetration resistance and depth of penetration(DOP) for grid STCC targets are obtained on the basis of the dynamic finite spherical cavityexpansion(FSCE) models including radial confinement effect. It is shown that the 9-cell grid STCC targets with optimal dimension match of thickness and side length of steel tube can reduce the DOP by about17 % and 23 % in comparison with the SIC targets and single-cell square STCC targets, respectively, due to both the confinement of square steel tube to concrete in the impacted cell and the additional confinement of the surrounding cells to the impacted cell;the penetration resistance and DOP of the grid and cellular STCC targets with similar steel ratio is close, and thus the grid STCC targets with simpler manufacturing process and excellent in-plane expandability are preferred in engineering practice;moreover, the predicted results of DOP model based on the FSCE models agree well with the tested results with the maximum disparity less than 12 % and the proposed model is more applicable to the grid and cellular STCC targets with high radial confinement.展开更多
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera...Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.展开更多
基金the projects supported by the Natural Science Foundation of Hunan Province, China (No. 2018JJ2470 and 2021JJ30776)。
文摘Steel-tube-confined concrete(STCC) targets are provided with excellent anti-penetration performance over semi-infinite concrete(SIC) targets since the steel tube imposes passive restraint on the in-filled concrete during the penetration process. Grid STCC system with square steel tubes is a potential solution to protective structures. In this paper, experiments of 9-cell grid STCC targets penetrated by 12.7 mm Armor Piercing Projectile(APP) were performed. The influence of side length and thickness of steel tube,steel ratio and impact velocity on anti-penetration performance were taken into account. Additionally,single-cell square STCC targets were also designed and tested for comparison with the 9-cell grid STCC targets. Damage modes and parameters of the tested targets were measured and discussed. Moreover,the stiffness of radial confinement of grid STCC targets is achieved according to the elastic solution of infinite cylindrical shell in Winkler medium. Furthermore, the penetration resistance and depth of penetration(DOP) for grid STCC targets are obtained on the basis of the dynamic finite spherical cavityexpansion(FSCE) models including radial confinement effect. It is shown that the 9-cell grid STCC targets with optimal dimension match of thickness and side length of steel tube can reduce the DOP by about17 % and 23 % in comparison with the SIC targets and single-cell square STCC targets, respectively, due to both the confinement of square steel tube to concrete in the impacted cell and the additional confinement of the surrounding cells to the impacted cell;the penetration resistance and DOP of the grid and cellular STCC targets with similar steel ratio is close, and thus the grid STCC targets with simpler manufacturing process and excellent in-plane expandability are preferred in engineering practice;moreover, the predicted results of DOP model based on the FSCE models agree well with the tested results with the maximum disparity less than 12 % and the proposed model is more applicable to the grid and cellular STCC targets with high radial confinement.
文摘Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.