This research is showing the effect of increasing an Fe extracting from the compression strength, tension and bending moment. The variations in this experiment are the increasing of Fe extracting 0.5%, 1% and 1.5% of ...This research is showing the effect of increasing an Fe extracting from the compression strength, tension and bending moment. The variations in this experiment are the increasing of Fe extracting 0.5%, 1% and 1.5% of concrete volume. Water Cement Ratio (WCR) variation of 0.48, 0.56 and 0.60. The result of increasing 1.5% Fe extracting causes the increasing of tension strength 44.028 kN/cm2, the increasing of slit tension strength 2.226 kN/cm2, the increasing of bending moment 14.81 kN/cm2 from normal concrete. 0.48 WCR produces tension strength, slit tension strength and bending moment more than 0.56 and 0.60 WCR. The increasing of Fe extracting with the distribution variation area and the spread concrete in the tension concrete area produce 3.705 kN/cm2 bending moment higher than the spread fiber in all of concrete area. The 4 cm fiber length produces the higher bending moment than the 2 cm fiber length. The difference is equally 5.185 kN/cm2. The combination result of the examined acting varieties by continuation statistic test gives the result to get the maximum tension and split tensile. It is a concrete combination of increasing 1.5% fiber percentage, 0.48 WCR, full spreading area and the 4 cm fiber length. The maximum bending moment is the increasing of 0.5% fiber percentage, 0.48 WCR, full spreading area and the 4 cm fiber length.展开更多
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ...We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.展开更多
To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosit...To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.展开更多
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca...Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.展开更多
C60 High Performance Concrete (HPC) was prepared by limiting cement content and adopting compositesuperplasticizer, low-alkalinity expansive agent and high-quality line mixture. The results showed that the performance...C60 High Performance Concrete (HPC) was prepared by limiting cement content and adopting compositesuperplasticizer, low-alkalinity expansive agent and high-quality line mixture. The results showed that the performance of the prepared C60 HPC was excellent. By adopting some advanced construction techniques such as usingsecondary vibration and secondary face compaction, controlling temperature difference and paying special attentionto early curing in the construction process, the prepared C60 HPC had been successfully applied in the monolithicstructure of huge building.展开更多
The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accel...The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.展开更多
The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the...The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the drop-weight impact test recommended by ACI Committee 544.The results indicate that the number of blows to final failure is greatly increased by addition of steel fibres.Moreover,the combination of steel fibres and steel rebars demonstrates a significant positive composite effect on the impact resistance,which results in the improvement in impact toughness of concrete specimens.In the view of variation of impact test results,the two-parameter Weibull distribution was adopted to analyze the experimental data.It is proved that the probabilistic distributions of the blows to first crack and to final failure of six types of samples approximately follow two-parameter Weibull distribution.展开更多
The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing...The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing water/cement ratio, the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably, and the carbonation resistance capability is also improved with the adding admixtures. The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD. The analysis results reveal that the main hydration product of sulphoaluminate cement, that is ettringite (AFt), decomposes after carbonation.展开更多
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious ...The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.展开更多
With the modern development of chemical and mineral admixtures, it is now possible to produce much higher performance concrete than before. Higher performance does not only mean higher strength, but also better durabi...With the modern development of chemical and mineral admixtures, it is now possible to produce much higher performance concrete than before. Higher performance does not only mean higher strength, but also better durability, lower risk of thermal cracking and higher dimensional stability etc. The three most effective admixtures for producing high performance concrete are superplastieizer, pulverized fuel ash and condensed silica fume. This paper outlines the properties of these materials and presents some practical guidelines for their usage.展开更多
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f...Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.展开更多
The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model...The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model of high performance concrete strength curve was established from them. At the micro level, the microstructure, hydration products and pore structure of concrete surface were analyzed by scanning electron microscopy(SEM), comprehensive thermal analysis(TG-DSC) and mercury intrusion porosimetry(MIP), respectively. The effect of carbonation on surface strength was also investigated. The results showed that the concrete surface hardness layer grew rapidly at early stage and then stabilized at last with ongoing curing age; the rebound value and compressive strength of concrete with slag were higher than those of concrete with the same content of fly ash. In addition, the strength curve obtained by the least square method can satisfy the local standard requirements with an average relative error of 8.9% and a relative standard deviation of 11.3%. When the carbonation depth was 6 mm, the compressive strength calculated by national uniform strength curve was 25 PMa higher than that by high performance concrete.展开更多
The shrinkage behavior of high performance cement concrete made from Portland cement, ultra fine granulated blast furnace slag and pulverized fly ash with addition of superplasticizer at different temperatures from am...The shrinkage behavior of high performance cement concrete made from Portland cement, ultra fine granulated blast furnace slag and pulverized fly ash with addition of superplasticizer at different temperatures from ambient temperature to 120 ℃ under different seuliug conditions was investigated by means of length change measurement on cylindrical concrete specimens along with curing age. Results show that drying shrinkage deformations of titled concrete specimens increased rapidly as the curing temperature rose. The development of dryiing shrinkage deformatian can be efficiently controlled with the aid of aluminum tape sealing as compared with the unsealed specimens, especially when the curing temperature is below 60℃ , although it will increase dramatically when the curing temperature is elevated to above 90%" . Polymer coating on concrete specimens showed a similar effect on the control of drying shrinkage as the sealing operation with aluminum tape.展开更多
The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results s...The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate.展开更多
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra...Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.展开更多
With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_...With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.展开更多
The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffus...The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.展开更多
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo...Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
文摘This research is showing the effect of increasing an Fe extracting from the compression strength, tension and bending moment. The variations in this experiment are the increasing of Fe extracting 0.5%, 1% and 1.5% of concrete volume. Water Cement Ratio (WCR) variation of 0.48, 0.56 and 0.60. The result of increasing 1.5% Fe extracting causes the increasing of tension strength 44.028 kN/cm2, the increasing of slit tension strength 2.226 kN/cm2, the increasing of bending moment 14.81 kN/cm2 from normal concrete. 0.48 WCR produces tension strength, slit tension strength and bending moment more than 0.56 and 0.60 WCR. The increasing of Fe extracting with the distribution variation area and the spread concrete in the tension concrete area produce 3.705 kN/cm2 bending moment higher than the spread fiber in all of concrete area. The 4 cm fiber length produces the higher bending moment than the 2 cm fiber length. The difference is equally 5.185 kN/cm2. The combination result of the examined acting varieties by continuation statistic test gives the result to get the maximum tension and split tensile. It is a concrete combination of increasing 1.5% fiber percentage, 0.48 WCR, full spreading area and the 4 cm fiber length. The maximum bending moment is the increasing of 0.5% fiber percentage, 0.48 WCR, full spreading area and the 4 cm fiber length.
基金Funed by the National Natural Science Foundation of China(No.U21A20149)the Ecological Environment Scientific Research Project of Anhui Province(No.2023hb0014)+2 种基金the Research Reserve of Anhui Jianzhu University(No.2022XMK01)the Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No.2022AH010017)Research on the preparation technology of self compacting concrete with strength grade C100.
文摘We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
基金Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.
基金Supported by the National Basic Research Programe of China("973"Program)(2009CB623203)the Construction Department of Zhejiang Province Foundation(1006)+1 种基金the Education Department of Zhejiang Province Foundation(Y200909029)the Doctoral Innovation Foundation of Nanjing University of Aeronautics andAstronautics(BCXJ07-04)~~
文摘Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.
文摘C60 High Performance Concrete (HPC) was prepared by limiting cement content and adopting compositesuperplasticizer, low-alkalinity expansive agent and high-quality line mixture. The results showed that the performance of the prepared C60 HPC was excellent. By adopting some advanced construction techniques such as usingsecondary vibration and secondary face compaction, controlling temperature difference and paying special attentionto early curing in the construction process, the prepared C60 HPC had been successfully applied in the monolithicstructure of huge building.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB623203)the China Postdoctoral Science Foundation(20070421036)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2005216)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010015)~~
文摘The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.
基金Project(50578026) supported by the National Natural Science Foundation of ChinaProject supported by FCT (SFRH/BPD/22680/2005)and Research Center of Mathematics of the University of Minho through the FCT Pluriannual Funding Program
文摘The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the drop-weight impact test recommended by ACI Committee 544.The results indicate that the number of blows to final failure is greatly increased by addition of steel fibres.Moreover,the combination of steel fibres and steel rebars demonstrates a significant positive composite effect on the impact resistance,which results in the improvement in impact toughness of concrete specimens.In the view of variation of impact test results,the two-parameter Weibull distribution was adopted to analyze the experimental data.It is proved that the probabilistic distributions of the blows to first crack and to final failure of six types of samples approximately follow two-parameter Weibull distribution.
基金Funded by the National Natural Science Foundation of China(No.50872043)
文摘The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing water/cement ratio, the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably, and the carbonation resistance capability is also improved with the adding admixtures. The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD. The analysis results reveal that the main hydration product of sulphoaluminate cement, that is ettringite (AFt), decomposes after carbonation.
基金Funded by the Research Grants Council of the Hong Kong SAR Government Project(31.37. A212)
文摘The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.
文摘With the modern development of chemical and mineral admixtures, it is now possible to produce much higher performance concrete than before. Higher performance does not only mean higher strength, but also better durability, lower risk of thermal cracking and higher dimensional stability etc. The three most effective admixtures for producing high performance concrete are superplastieizer, pulverized fuel ash and condensed silica fume. This paper outlines the properties of these materials and presents some practical guidelines for their usage.
基金Funded by the National Natural Science Foundation of China,China(No.51438003)the National Key R&D Program of China,China(2018YFC0705400)
文摘Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.
基金Funded by the National Natural Science Foundation of China(No.2015CB655102)National Science&Technology Pillar Program(No.2014BAB15B01-02)
文摘The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model of high performance concrete strength curve was established from them. At the micro level, the microstructure, hydration products and pore structure of concrete surface were analyzed by scanning electron microscopy(SEM), comprehensive thermal analysis(TG-DSC) and mercury intrusion porosimetry(MIP), respectively. The effect of carbonation on surface strength was also investigated. The results showed that the concrete surface hardness layer grew rapidly at early stage and then stabilized at last with ongoing curing age; the rebound value and compressive strength of concrete with slag were higher than those of concrete with the same content of fly ash. In addition, the strength curve obtained by the least square method can satisfy the local standard requirements with an average relative error of 8.9% and a relative standard deviation of 11.3%. When the carbonation depth was 6 mm, the compressive strength calculated by national uniform strength curve was 25 PMa higher than that by high performance concrete.
文摘The shrinkage behavior of high performance cement concrete made from Portland cement, ultra fine granulated blast furnace slag and pulverized fly ash with addition of superplasticizer at different temperatures from ambient temperature to 120 ℃ under different seuliug conditions was investigated by means of length change measurement on cylindrical concrete specimens along with curing age. Results show that drying shrinkage deformations of titled concrete specimens increased rapidly as the curing temperature rose. The development of dryiing shrinkage deformatian can be efficiently controlled with the aid of aluminum tape sealing as compared with the unsealed specimens, especially when the curing temperature is below 60℃ , although it will increase dramatically when the curing temperature is elevated to above 90%" . Polymer coating on concrete specimens showed a similar effect on the control of drying shrinkage as the sealing operation with aluminum tape.
基金Funded by National Natural Science Foundation of China(Nos.52008002,U2006224 and 51878003)Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University(No.2019QDZ66)。
文摘The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate.
基金Funded by the National Natural Science Foundation of China (No. 50808101)Jiangsu Provincial Program for Basic Research (Natural Science Foundation) (No.BK2008417)China Postdoctoral Science Foundation (No. 20080431100)
文摘Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.
文摘With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.
文摘The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(No.BY2015027-23)State Key Laboratory for Geo Mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.