期刊文献+
共找到3,651篇文章
< 1 2 183 >
每页显示 20 50 100
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
1
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Comparative study on bearing mechanism and design parameters of confined concrete arch joints in deep soft rock roadway 被引量:4
2
作者 Wei Lu Qi Wang +4 位作者 Bei Jiang Shuo Xu Bohong Liu Peng Zhang Zhenhua Jiang 《International Journal of Coal Science & Technology》 EI 2019年第4期493-504,共12页
Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground ... Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects. 展开更多
关键词 CONFINED concrete ARCH Soft rock ROADWAY BEARING mechanism Failure mode CASING joint
下载PDF
Incremental dynamic analysis of concrete gravity dams including base and lift joints 被引量:2
3
作者 Mohammad Alembagheri Mohsen Ghaemian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期119-134,共16页
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake ... The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes. 展开更多
关键词 concrete gravity dams incremental dynamic analysis seismic analysis damage index dam failures jointS performance characteristics structural capacity
下载PDF
Seismic Behaviour of Beam-Column Joints of Precast and Partial Steel Reinforced Concrete 被引量:1
4
作者 Wanpeng Cheng Licheng Wang +1 位作者 Yupu Song Jun Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期108-117,共10页
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate... A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints. 展开更多
关键词 preeast and partial steel reinforced concrete (PPSRC) beam-column joints low cyclic test hysteretic curve degradations of strength and stiffness DUCTILITY
下载PDF
Research on stress concentration at tubular joints in concrete filled steel tubular truss arch bridge 被引量:1
5
作者 LI Rui YE Liao-yuan CHEN Ying 《Journal of Civil Engineering and Architecture》 2009年第3期11-15,共5页
In this paper stresses at joints forming by hollow steel tube and concrete filled steel tube (CFST) are calculated, analyzed and compared. It is founded that the stress concentration at joints of CFST is a quite dif... In this paper stresses at joints forming by hollow steel tube and concrete filled steel tube (CFST) are calculated, analyzed and compared. It is founded that the stress concentration at joints of CFST is a quite different from that of hollow steel tube. A conclusion can be made that analysis of fatigue at the joints of CFST truss arch bridge can not apply the results developed from analyzing at joints of hollow steel tube in marine structure. 展开更多
关键词 concrete filled steel tube (CFST) joint stress concentration
下载PDF
Behaviour of a Moment Resisting Composite Steel and Concrete Joint Under Alternate Loading
6
作者 Alberto Zanchettin Bruno Briseghella Tobia Zordan 《施工技术》 CAS 北大核心 2011年第6期93-101,110,共10页
The authors show the results of a study conducted on a joint connecting a concrete column to a composite steel concrete floor,subjected to tension on the beams as a result of the decomposition of sagging bending momen... The authors show the results of a study conducted on a joint connecting a concrete column to a composite steel concrete floor,subjected to tension on the beams as a result of the decomposition of sagging bending moment.The beam to column connection is achieved by means of headed studs welded to the beam and embedded in the concrete cast.Five different configurations have been tested at failure and the results are compared to formulae proposed in literature.Different degrees of ductility,reliability and strength have been obtained varying geometry and reinforcement ratio on the joints tested. 展开更多
关键词 composite steel concrete joint laboratory test analysis alternate loading
下载PDF
Seepage Mitigation in Hydropower Dams by Optimization in Roller Compacted Concrete Interlayer (Monoliths) Joint Bonding Technology
7
作者 Junjie Jin Qingguo Zhou +1 位作者 Yuanguang Liu Shuncai Ning 《Open Journal of Civil Engineering》 2022年第1期139-151,共13页
Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a maj... Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time. 展开更多
关键词 SEEPAGE Roller Compacted concrete (RCC) Mix RCC joint Exposure Time Modified Maturity Factor (MMF) Dry and High Temperature Area RCC joint Bonding Quality Control Measures IMPERMEABILITY Shear Forces
下载PDF
Strength&Conduct of Reinforced Concrete Corner Joint under Negative Moment Effect
8
作者 Rasha A Waheeb 《Journal of Architectural Environment & Structural Engineering Research》 2021年第4期10-17,共8页
The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced ... The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced concrete Fc'and delve into it for the most accurate details and concrete connections about the behavior and resistance of the corner joint of reinforced concrete,Depending on the available studies and sources in addition to our study,we concluded that each of these effects had a clear role in the behavior and resistance of the corner joint of reinforced concrete under the influence of the negative moment and yield stress.A study of the types of faults that can be reinforced angle joints obtains details and conditions of crushing that are almost identical for all types of steel reinforcement details and the basic requirements for the acceptable behavior of reinforced concrete joints in the installations and the efficiency of the joint and this may help us to prepare for disasters,whether natural or other,as happens with tremors The floor and failure that may occur due to wrong designs or old buildings and the possibility of using those connections to treat those joints and sections in reinforced or unarmed concrete facilities to preserve the safety of humans and buildings from sudden disasters and reduce and reduce risks,as well as qualitative control over the production of concrete connections and sections free from defects to the extreme. 展开更多
关键词 concrete design Strength materials Reinforced corner joint Structure
下载PDF
Static behavior of semi-rigid thin-walled steel-concrete composite beam-to-column joints with bolted partial-depth flush end plate:experimental study
9
作者 郜京峰 张耀春 +2 位作者 王海明 姚淇誉 金路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期91-102,共12页
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ... A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints. 展开更多
关键词 SEMI-RIGID thin-walled steel-concrete composite structures beam-to-column joints static behavior experimental study
下载PDF
Seismic responses of high concrete face rockfill dams:A case study 被引量:6
10
作者 Sheng-shui Chen Zhong-zhi Fu +1 位作者 Kuang-ming Wei Hua-qiang Han 《Water Science and Engineering》 EI CAS CSCD 2016年第3期195-204,共10页
Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s... Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed. 展开更多
关键词 concrete face ROCKFILL DAM (CFRD) SEISMIC response Zipingpu PERMANENT strain Construction joint VISCOELASTIC model Finite element method
下载PDF
Experimental seismic behavior of squat shear walls with precast concrete hollow moulds 被引量:4
11
作者 Han Wenlong Zhao Zuozhou +2 位作者 Qian Jiaru Zhang Yingbao Ma Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期871-886,共16页
This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Nonc... This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0~1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could signifi cantly improve the shear strength and stiff ness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little eff ect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended eff ective stiff ness for cast-in situ walls in ASCE 41-17 appeared to be appropriate for EVE walls. 展开更多
关键词 precast concrete HOLLOW mould low-aspect-ratio NONCONTACT lap SPLICE prefabricated boundary element vertical and horizontal joints seismic behavior
下载PDF
Seismic stability analysis of concrete gravity dams with penetrated cracks 被引量:2
12
作者 Shou-yan JIANG Cheng-bin DU 《Water Science and Engineering》 EI CAS 2012年第1期105-119,共15页
The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of pene... The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM). Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site. 展开更多
关键词 seismic stability concrete gravity dam penetrated crack plastic-damage model hard contact algorithm Coloumb friction model joint opening
下载PDF
Multi-gene genetic programming extension of AASHTO M-E for design oflow-volume concrete pavements 被引量:2
13
作者 Haoran Li Lev Khazanovich 《Journal of Road Engineering》 2022年第3期252-266,共15页
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement... The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions. 展开更多
关键词 Mechanistic-empirical pavement design guide Low-volume roads concrete pavement Transverse cracking joint faulting Multi-gene genetic programming(MGGP)
下载PDF
Earthquake safety assessment of concrete arch and gravity dams 被引量:12
14
作者 林皋 胡志强 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期251-264,共14页
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-depend... Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods. 展开更多
关键词 arch dam gravity dam earthquake safety dynamic behavior of concrete strain-rate effect joint-opening effect dam-foundation interaction non-linear modeling
下载PDF
Mechanical Behavior of Concrete Block Masonry
15
作者 Gihad Mohamad Eduardo Rizzatti +1 位作者 Paulo Brandao Lourenco Humberto Ramos Roman 《Journal of Civil Engineering and Architecture》 2012年第10期1354-1361,共8页
The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In ... The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively. 展开更多
关键词 MASONRY concrete block PRISMS FAILURE vertical joint
下载PDF
基于转动摩擦铰阻尼器的干式装配梁-柱节点抗震性能试验 被引量:1
16
作者 申允 夏成建 +1 位作者 陈强 王昊祥 《地震研究》 CSCD 北大核心 2024年第1期105-113,共9页
基于转动摩擦铰阻尼器(RFHD),提出了转动摩擦耗能干式装配梁-柱节点(DRFDBJ)。为了验证DRFDBJ结构对于实现预期力学性能的可行性和合理性,以施加在摩擦片表面的螺栓预紧力(P_(c))为变量,开展了2个工况下的DRFDBJ试件低周往复拟静力试验... 基于转动摩擦铰阻尼器(RFHD),提出了转动摩擦耗能干式装配梁-柱节点(DRFDBJ)。为了验证DRFDBJ结构对于实现预期力学性能的可行性和合理性,以施加在摩擦片表面的螺栓预紧力(P_(c))为变量,开展了2个工况下的DRFDBJ试件低周往复拟静力试验研究。结果表明:DRFDBJ结构的力学性能主要由RFHD提供并控制,试验中节点呈现了稳定的承载力和理想的变形、耗能能力,并实现了预期的损伤集中;2个不同P_(c)水准下节点承载力的试验值与理论值误差不超过5%,通过调整P_(c)可实现节点承载力的调控,为DRFDBJ结构承载力的可调控提供了支撑。 展开更多
关键词 装配式框架结构 干式装配梁-柱节点 转动摩擦阻尼器 摩擦阻尼器
下载PDF
新型钢管混凝土梁柱节点力学性能试验研究 被引量:2
17
作者 张晓光 曹国旭 +1 位作者 黄远 李乾坤 《建筑结构》 北大核心 2024年第3期1-6,共6页
为研究内加强环式圆钢管混凝土柱与矩形钢管混凝土梁这种新型连接节点的力学性能,设计了缩尺钢管混凝土梁柱节点试件,开展了相同梁柱节点试件的静力加载试验和低周往复加载试验。通过研究该节点试件的破坏模式、荷载-位移曲线以及拟静... 为研究内加强环式圆钢管混凝土柱与矩形钢管混凝土梁这种新型连接节点的力学性能,设计了缩尺钢管混凝土梁柱节点试件,开展了相同梁柱节点试件的静力加载试验和低周往复加载试验。通过研究该节点试件的破坏模式、荷载-位移曲线以及拟静力加载试验的骨架曲线、核心区剪切变形等,分析了节点试件的承载能力、延性和耗能能力,全面考察了同一梁柱节点在静力加载和低周往复加载两种工况下的受力性能和破坏模式。结果表明:钢管混凝土梁柱节点试件核心区强度较强,破坏模式主要为梁端破坏,低周往复加载试验时试件梁柱连接处附近的梁端钢板发生拉裂破坏和钢板鼓曲,静力加载试验时试件梁端焊缝发生拉裂破坏;试件延性较好,加载过程中经历了弹性、弹塑性和塑性发展阶段。最后提出了该类钢管混凝土梁柱节点核心区的抗剪强度计算公式。 展开更多
关键词 钢管混凝土梁柱节点 内隔板 静力加载试验 低周往复加载试验 受力性能 设计方法
下载PDF
马鞍山长江公铁大桥Z3号桥塔施工关键技术 被引量:1
18
作者 潘博 李维 刘爱林 《世界桥梁》 北大核心 2024年第2期29-35,共7页
巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1120+392+112)m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压... 巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1120+392+112)m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压爬模施工;钢-混结合段高3 m,内部采用PBL键+剪力钉+高强度钢锚杆+高强度混凝土结构形式。在中塔柱设置钢管临时横撑控制塔柱线形及应力;下横梁采用落地支架法分层施工,与对应塔柱同步浇筑;钢-混结合段混凝土采用C60细石补偿收缩混凝土+高强度灌浆料,保证了混凝土施工质量;采用工厂“2+1”立体匹配制造、“提升站+运输栈桥”钢塔节段转运等技术,并研制15000 t•m超大型塔吊,实现了钢塔柱大节段的制造、整体滩地运输和吊装;钢塔节段间采用栓焊组合连接形式,通过设置工艺隔板、双面坡口等措施控制了钢塔焊接变形;利用定位桁架临时锁定钢塔合龙段实现了钢塔的精确合龙,定位桁架受力及变形均满足要求。 展开更多
关键词 斜拉桥 钢-混组合桥塔 超高多肢 钢-混结合段 整体吊装 钢塔合龙 栓焊组合连接 施工技术
下载PDF
超深覆盖层上面板坝防渗墙连接板接缝变形机制及优化分析
19
作者 邹德高 屈永倩 +3 位作者 孔宪京 常哲瑜 刘京茂 陈楷 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1089-1096,共8页
针对超深软弱覆盖层上的面板坝工程止水缝安全问题,从变形和应力2个方面开展优化研究,揭示了防渗墙连接板趾板面板防渗体系的变形模式,定位了薄弱位置,提出了优化方案,并量化了工程应用效果.结果表明,防渗墙与趾板间沉降差集中在防渗墙... 针对超深软弱覆盖层上的面板坝工程止水缝安全问题,从变形和应力2个方面开展优化研究,揭示了防渗墙连接板趾板面板防渗体系的变形模式,定位了薄弱位置,提出了优化方案,并量化了工程应用效果.结果表明,防渗墙与趾板间沉降差集中在防渗墙与连接板之间的止水缝处,设置多块连接板无法起到逐步过渡沉降差的作用.防渗墙下游侧设置侧向支撑、制作倾斜形止水缝、趾板下设支撑墙均可减小防渗墙连接板间止水缝沉陷变形.相比垂直止水缝和多块连接板的传统方案,所提的防渗墙顶部拓宽连接板倾斜形止水缝以及防渗墙顶部拓宽倾斜形止水缝趾板下设支撑墙的深厚覆盖层上面板坝防渗体系综合优化方案可使防渗墙与连接板之间止水缝沉陷变形分别减小41.5%和53.8%. 展开更多
关键词 深厚覆盖层 面板堆石坝 止水缝变形 优化设计
下载PDF
钢-UHPC结合段PBL连接件和钢梁端面承压联合作用研究
20
作者 杨俊 李克阳 +2 位作者 周建庭 冷景晨 邹杨 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期1-8,16,共9页
钢-混结合段作为钢梁和混凝土连接为整体的核心部件,传力构件的受力性能对钢-混凝土结合段至关重要。为提高结合段的力学性能,进行了仅有钢梁端面承压、PBL连接件和两者联合作用3组推出试验。结果表明:3组试件最终破坏裂缝分布均为钢梁... 钢-混结合段作为钢梁和混凝土连接为整体的核心部件,传力构件的受力性能对钢-混凝土结合段至关重要。为提高结合段的力学性能,进行了仅有钢梁端面承压、PBL连接件和两者联合作用3组推出试验。结果表明:3组试件最终破坏裂缝分布均为钢梁端面侧“八”字形分布;钢梁端面组(D组)试件破坏模式主要为UHPC的开裂破坏而失效,PBL连接件组(P组)和联合作用组(PD组)试件主要是贯穿钢筋的剪切破坏而失效;3组试件的荷载-滑移曲线均包含弹性、裂缝开展和屈服3个阶段,由于贯穿钢筋和UHPC榫具有抑制裂缝开展和提高试件延性的作用,P组和PD组试件裂缝开展阶段较D组更短,屈服阶段更长,延性更好。对荷载-滑移曲线进行拟合,提出了钢梁端面承压和PBL连接件承载力随滑移量变化的计算公式。引入滞后滑移差Δs_(j),当Δs_(j)=0~0.67 mm时,联合作用计算结果偏于安全。计算得到钢梁端面承压传力比例约为43%,PBL连接件传力比例约为57%,两者传力效果基本相当。利用UHPC作为外包混凝土时,建议采用承载能力更高的贯穿钢筋,以充分发挥UHPC的高强性能,从而提高结合段的承载能力。 展开更多
关键词 桥梁工程 钢-混组合结构 UHPC 结合段 PBL连接件 传力比例
下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部