The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a u...The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a uniaxial hydraulic servo machine,acoustic emission (AE) equipment,a split Hopkinson pressure bar (SHPB) and an ultrasonic wave analyser.The experimental results indicate that the confluence of multiple cracks forms a penetrating cross section in normal high-strength concrete (NHSC) under the condition of static loading,while the elastic energy that surges out at failure can cause tremendous damage when subjected to dynamic loading.A single crack was split into multiple propagation directions due to the presence of fibres in steel fibre-reinforced concrete (SFRC);adding fibre to concrete should be an effective way to dissipate energy.The non-steam-cured reactive powder concrete (NSC-RPC) designed in this paper can store and dissipate more energy than normal concrete,as NSC-RPC exhibits a strong ability to resist impact.Applying NSC-RPC to the long-service material of a shaft lining structure in deep underground engineering is quite effective.展开更多
The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the pa...The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.展开更多
基金the National Natural Science Foundation of China(No.51678049)the State Key Research Development Program of China(No.2016YFC0600803)。
文摘The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a uniaxial hydraulic servo machine,acoustic emission (AE) equipment,a split Hopkinson pressure bar (SHPB) and an ultrasonic wave analyser.The experimental results indicate that the confluence of multiple cracks forms a penetrating cross section in normal high-strength concrete (NHSC) under the condition of static loading,while the elastic energy that surges out at failure can cause tremendous damage when subjected to dynamic loading.A single crack was split into multiple propagation directions due to the presence of fibres in steel fibre-reinforced concrete (SFRC);adding fibre to concrete should be an effective way to dissipate energy.The non-steam-cured reactive powder concrete (NSC-RPC) designed in this paper can store and dissipate more energy than normal concrete,as NSC-RPC exhibits a strong ability to resist impact.Applying NSC-RPC to the long-service material of a shaft lining structure in deep underground engineering is quite effective.
文摘The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.