期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces 被引量:3
1
作者 Hong Yuan Faping Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期257-264,共8页
In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one... In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening. 展开更多
关键词 FRP sheet · Interfacial fracture energy ·Debonding · spalling resistance · Bent concrete surface
下载PDF
An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures 被引量:12
2
作者 Yang Ju Li Wang +1 位作者 Hongbin Liu Kaipei Tian 《Science Bulletin》 SCIE EI CAS CSCD 2015年第23期2022-2053,共32页
Polypropylene fibers are embedded to prevent reactive powder concrete (RPC) from spalling failure under high temperatures. This paper probes the influence of embedded fibers at various volumetric dosages on the ther... Polypropylene fibers are embedded to prevent reactive powder concrete (RPC) from spalling failure under high temperatures. This paper probes the influence of embedded fibers at various volumetric dosages on the thermomechanical properties of polypropylene-fibered reactive powder concrete (PPRPC) exposed to high tem- peratures up to 350 ℃ and on the spalling performance and characteristics up to 600 ℃. The thermomechanical prop- erties include the characteristic temperature for spalling, and residual strengths, such as the compressive strength, split tensile strength, and flexural tensile strength. A high- definition charge-coupled device camera and scanning electron microscope technology were employed to capture the spalling processes and to detect the microstructural changes in the materials with various fiber dosages. To understand and characterize the mechanism by which polypropylene fibers influence the thermal spalling of RPC, a numerical model to determine the moisture migration and vapor pressure transmission during spalling was developed in this paper. It showed that there was an optimal volu- metric dosage of fibers to prevent PPRPC from explosive spalling. The relationships between the mechanical char- acteristics of PPRPC and the fiber dosages were derived based on experimental data. 展开更多
关键词 Polypropylene reactive powder concrete(PPRPC) · Thermal spalling · Vapor pressuremechanism · Polypropylene fibers ·Elevated temperatures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部