A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the tem...A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.展开更多
Cracking in wading-concrete structures has a worse impact on structural safety compared with conventional concrete structures.The accurate and timely monitoring of crack development plays a significant role in the saf...Cracking in wading-concrete structures has a worse impact on structural safety compared with conventional concrete structures.The accurate and timely monitoring of crack development plays a significant role in the safety of wading-concrete engineering.The heat-transfer rate near a crack is related to the flow velocity of the fluid in the crack.Based on this,a novel crack-identification method for underwater concrete structures is presented.This method uses water irrigation to generate seepage at the interface of a crack;then,the heat-dissipation rate in the crack area will increase because of the convective heat-transfer effect near the crack.Crack information can be identified by monitoring the cooling law and leakage flow near cracks.The proposed mobile crack-monitoring system consists of a heating system,temperature-measurement system,and irrigation system.A series of tests was conducted on a reinforcedconcrete beam using this system.The crack-discrimination indexψwas defined,according to the subsection characteristics of the heat-source cooling curve.The effects of the crack width,leakage flow,and relative positions of the heat source and crack onψwere studied.The results showed that the distribution characteristics ofψalong the monitoring line could accurately locate the crack,but not quantify the crack width.However,the leakage flow is sensitive to the crack width and can be used to identify it.展开更多
Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet th...Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet the rapid economic development of various regions, construction scale and quantity of road and bridge engineering have been continuously expanded and increased, therefore, higher requirements for construction quality and construction standard are also presented. During the construction of road and bridge engineering, concrete crack is a key problem which affects the construction quality. In this regard, this paper analyzes cause and prevention measures of concrete cracks during the construction of road and bridge engineering, and hopes to provide construction personnel with valuable references.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50779010)
文摘A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.
基金This work was supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0422)China and the Fundamental Research Funds for the Central Universities,China.
文摘Cracking in wading-concrete structures has a worse impact on structural safety compared with conventional concrete structures.The accurate and timely monitoring of crack development plays a significant role in the safety of wading-concrete engineering.The heat-transfer rate near a crack is related to the flow velocity of the fluid in the crack.Based on this,a novel crack-identification method for underwater concrete structures is presented.This method uses water irrigation to generate seepage at the interface of a crack;then,the heat-dissipation rate in the crack area will increase because of the convective heat-transfer effect near the crack.Crack information can be identified by monitoring the cooling law and leakage flow near cracks.The proposed mobile crack-monitoring system consists of a heating system,temperature-measurement system,and irrigation system.A series of tests was conducted on a reinforcedconcrete beam using this system.The crack-discrimination indexψwas defined,according to the subsection characteristics of the heat-source cooling curve.The effects of the crack width,leakage flow,and relative positions of the heat source and crack onψwere studied.The results showed that the distribution characteristics ofψalong the monitoring line could accurately locate the crack,but not quantify the crack width.However,the leakage flow is sensitive to the crack width and can be used to identify it.
文摘Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet the rapid economic development of various regions, construction scale and quantity of road and bridge engineering have been continuously expanded and increased, therefore, higher requirements for construction quality and construction standard are also presented. During the construction of road and bridge engineering, concrete crack is a key problem which affects the construction quality. In this regard, this paper analyzes cause and prevention measures of concrete cracks during the construction of road and bridge engineering, and hopes to provide construction personnel with valuable references.