This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai...This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.展开更多
The construction of water conservancy projects should commence during optimal atmospheric conditions and non-flood period to ensure completion before the flood season begin in summer.In most areas of Northern China,th...The construction of water conservancy projects should commence during optimal atmospheric conditions and non-flood period to ensure completion before the flood season begin in summer.In most areas of Northern China,the temperature during winter remain at lower level,in which environmental factors play the most important role in the construction of water conservancy projects.In particular,low temperature directly affects the strength of concrete and delays its solidification,this highly affects the quality and progress of concrete construction.In order to overcome this barrier,better planning,for reasonable and effective construction techniques and targeted control measures should be adopted to reduce the adverse effects of low temperature to assure a strong and safe architecture.展开更多
The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characte...The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characteristics of natural sands have been determined and improved by the addition of crushing sand, taking into account the too fine elements of the sand. Four types of sand were used (Congo River, Djiri, Mfilou, crushed sand). The concrete formulations proposed from improved sands (30% crushed sand and 70% natural sand) reveal an increase in mechanical strength. Thus, it appeared that this improvement of the natural fine sands by the crushing sand has brought a clear increase in the maneuverability of the concretes and the physico-mechanical characteristics of nearly 50%, although this crushing sand has a sand equivalent value of less than 70%. These results augur well for the durability of structures in the construction industry in Congo.展开更多
The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Was...The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Waste products from a variety of sectors can be recycled and used as a green concrete substitute.This decreases the environmental effects of concrete manufacturing as well as energy consumption.The use of solid waste materials for green building is extremely important now and in the future.Green concrete is also in its infancy in terms of manufacturing and application.Academics must intervene by encouraging business implementation.The aim of this review paper is to raise awareness about the importance of repurposing recycled materials and to highlight new technologies for producing green,sustainable concrete.展开更多
Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inex...Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.展开更多
This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,w...This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,which has also been obtained locally.This study first describes various trial mixtures tested as well as the specimen preparation techniques investigated that led to the final UHSC-FS mixtures.The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as making UHSC more affordable to a wider variety of applications.The final mixture design constituents were:river sand,locally available type I/II cement,silica fume,and spent FS,which was obtained from a local steel casting company.Multiple variables were investigated,such as the aggregate type and size,concrete age(7,14,and 28-days),the curing regimen,and the water-to-cement ratio(w/cm)to optimize a UHSC mixture that used local materials and FS.This systematic development revealed that heat curing the specimens in a water bath at 50 oC(122 oF)after demolding and then dry curing at 200 oC(392 oF)two days before testing with a w/cm of 0.20 at 28-days produced the highest compressive strengths.Once an optimum UHSC mixture was identified a partial replacement of the fine aggregate with FS was completed at 10%,20%,and 30%.The results showed an increase of compressive strength performance at 10%replacement,followed by no change at 20%,and finally a slight decrease at 30%.Developing this innovative material with local materials and FS ultimately produces a novel sustainable construction material,reduces the costs,and produces mechanical performance similar to prepackaged,commercially,available construction building materials.展开更多
Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders...Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders persists. This is the case of quarries extracting river sand used to make concrete and mortar. However, the dosages of the various constituents are most often chosen on the basis of experience without any prior characterization of this material. This paper presents a comprehensive review of the characterization of river sand for its use in concrete in DRC. The origin and global use of river sand in construction are presented in percentage terms to highlight the importance of river sand as a construction material. The physical properties of river sand, including particle size distribution, bulk density, absolute density, and cleanliness are discussed in detail. The paper examines the effect of variations in river sand properties on concrete behavior, including density and compressive strength. Overall, this paper emphasizes the need to properly characterize river sand before using it in construction to ensure durable, high-quality structures. This will avoid the problems that are observed in particular a bad behavior of the coating on the walls;cracks and crumbling of the beams, lintels, posts and even the ruin of the structures.展开更多
The construction of rigid pavements using conventionally vibrated concrete consumes a significant amount of energy as it requires rigorous vibrations.This also requires a high number of laborers and creates noise duri...The construction of rigid pavements using conventionally vibrated concrete consumes a significant amount of energy as it requires rigorous vibrations.This also requires a high number of laborers and creates noise during construction.Thus,a new kind of concrete called semi-flowable self-consolidating concrete(SFSCC)for pavement construction using slip-form paving technology is reviewed in this article.The SFSCC requires no energy for compaction as it gets compacted under its self weight.It also renders shape stability in the fresh state which is critical to expedite the construction in slip form concreting.The review focuses on the need,evolution,and requirement of the ingredient materials,mix design,and methods for testing the properties of SFSCC.Further,the utilization of industrial wastes in the construction industry and the production of self-consolidating concrete are discussed.The literature on the effect of different materials on the properties of such concrete and field studies in this context are discussed.Lastly,its suitability as pavement construction material either in normal rural roads or in low-volume village roads is discussed in the Indian context.The review reveals that relatively less amount of study on SFSCC in general and as a pavement material in particular is available in the literature and pursuant to this,creates a wide scope of research.展开更多
In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components an...In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components and buildings by means of 3D concrete printing. The major issues of this innovative technique focus on the preparation and optimization of concrete materials which possess favourable printable properties as well as the measurement and evaluation methods of their workability. This paper firstly introduces three largescale 3D printing systems that have been successfully applied in construction industry. It then summarizes the commonly used raw materials in concrete manufacturing. Critical factors that should be particularly controlled in material preparation are specified. Easy-extrusive, easy-flowing, well-buildable, proper setting time and low shrinkage are significant for concrete mixture to meet the critical requirements of a freeform construction process. Thereafter, measuring methods that can be employed to assess the fresh and hardened properties of concrete at early stages are suggested. Finally, a few of evaluation methods are presented which may offer certain assistance for optimizing material preparation. The objective of this work is to review current design methodologies and experimental measurement and evaluation methods for 3D printable concrete materials and promote its responsible use with largescale 3D printing technology.展开更多
Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objective...Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.展开更多
文摘This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.
文摘The construction of water conservancy projects should commence during optimal atmospheric conditions and non-flood period to ensure completion before the flood season begin in summer.In most areas of Northern China,the temperature during winter remain at lower level,in which environmental factors play the most important role in the construction of water conservancy projects.In particular,low temperature directly affects the strength of concrete and delays its solidification,this highly affects the quality and progress of concrete construction.In order to overcome this barrier,better planning,for reasonable and effective construction techniques and targeted control measures should be adopted to reduce the adverse effects of low temperature to assure a strong and safe architecture.
文摘The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characteristics of natural sands have been determined and improved by the addition of crushing sand, taking into account the too fine elements of the sand. Four types of sand were used (Congo River, Djiri, Mfilou, crushed sand). The concrete formulations proposed from improved sands (30% crushed sand and 70% natural sand) reveal an increase in mechanical strength. Thus, it appeared that this improvement of the natural fine sands by the crushing sand has brought a clear increase in the maneuverability of the concretes and the physico-mechanical characteristics of nearly 50%, although this crushing sand has a sand equivalent value of less than 70%. These results augur well for the durability of structures in the construction industry in Congo.
文摘The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Waste products from a variety of sectors can be recycled and used as a green concrete substitute.This decreases the environmental effects of concrete manufacturing as well as energy consumption.The use of solid waste materials for green building is extremely important now and in the future.Green concrete is also in its infancy in terms of manufacturing and application.Academics must intervene by encouraging business implementation.The aim of this review paper is to raise awareness about the importance of repurposing recycled materials and to highlight new technologies for producing green,sustainable concrete.
文摘Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.
文摘This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,which has also been obtained locally.This study first describes various trial mixtures tested as well as the specimen preparation techniques investigated that led to the final UHSC-FS mixtures.The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as making UHSC more affordable to a wider variety of applications.The final mixture design constituents were:river sand,locally available type I/II cement,silica fume,and spent FS,which was obtained from a local steel casting company.Multiple variables were investigated,such as the aggregate type and size,concrete age(7,14,and 28-days),the curing regimen,and the water-to-cement ratio(w/cm)to optimize a UHSC mixture that used local materials and FS.This systematic development revealed that heat curing the specimens in a water bath at 50 oC(122 oF)after demolding and then dry curing at 200 oC(392 oF)two days before testing with a w/cm of 0.20 at 28-days produced the highest compressive strengths.Once an optimum UHSC mixture was identified a partial replacement of the fine aggregate with FS was completed at 10%,20%,and 30%.The results showed an increase of compressive strength performance at 10%replacement,followed by no change at 20%,and finally a slight decrease at 30%.Developing this innovative material with local materials and FS ultimately produces a novel sustainable construction material,reduces the costs,and produces mechanical performance similar to prepackaged,commercially,available construction building materials.
文摘Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders persists. This is the case of quarries extracting river sand used to make concrete and mortar. However, the dosages of the various constituents are most often chosen on the basis of experience without any prior characterization of this material. This paper presents a comprehensive review of the characterization of river sand for its use in concrete in DRC. The origin and global use of river sand in construction are presented in percentage terms to highlight the importance of river sand as a construction material. The physical properties of river sand, including particle size distribution, bulk density, absolute density, and cleanliness are discussed in detail. The paper examines the effect of variations in river sand properties on concrete behavior, including density and compressive strength. Overall, this paper emphasizes the need to properly characterize river sand before using it in construction to ensure durable, high-quality structures. This will avoid the problems that are observed in particular a bad behavior of the coating on the walls;cracks and crumbling of the beams, lintels, posts and even the ruin of the structures.
基金financial assistance provided by Dr.B.R.Ambedkar National Institute of Technology Jalandhar through Technical Education Quality Improvement Programme(TEQIP-Ⅲ)。
文摘The construction of rigid pavements using conventionally vibrated concrete consumes a significant amount of energy as it requires rigorous vibrations.This also requires a high number of laborers and creates noise during construction.Thus,a new kind of concrete called semi-flowable self-consolidating concrete(SFSCC)for pavement construction using slip-form paving technology is reviewed in this article.The SFSCC requires no energy for compaction as it gets compacted under its self weight.It also renders shape stability in the fresh state which is critical to expedite the construction in slip form concreting.The review focuses on the need,evolution,and requirement of the ingredient materials,mix design,and methods for testing the properties of SFSCC.Further,the utilization of industrial wastes in the construction industry and the production of self-consolidating concrete are discussed.The literature on the effect of different materials on the properties of such concrete and field studies in this context are discussed.Lastly,its suitability as pavement construction material either in normal rural roads or in low-volume village roads is discussed in the Indian context.The review reveals that relatively less amount of study on SFSCC in general and as a pavement material in particular is available in the literature and pursuant to this,creates a wide scope of research.
文摘In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components and buildings by means of 3D concrete printing. The major issues of this innovative technique focus on the preparation and optimization of concrete materials which possess favourable printable properties as well as the measurement and evaluation methods of their workability. This paper firstly introduces three largescale 3D printing systems that have been successfully applied in construction industry. It then summarizes the commonly used raw materials in concrete manufacturing. Critical factors that should be particularly controlled in material preparation are specified. Easy-extrusive, easy-flowing, well-buildable, proper setting time and low shrinkage are significant for concrete mixture to meet the critical requirements of a freeform construction process. Thereafter, measuring methods that can be employed to assess the fresh and hardened properties of concrete at early stages are suggested. Finally, a few of evaluation methods are presented which may offer certain assistance for optimizing material preparation. The objective of this work is to review current design methodologies and experimental measurement and evaluation methods for 3D printable concrete materials and promote its responsible use with largescale 3D printing technology.
文摘Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.