The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength c...The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength concrete were tested with constant-or variable-amplitude cyclic compression and lateral confinement pressure in two orthogonal directions. A fatigue equation was gained by modifying the classical Aas-Jakobsen S-N equation and used for taking into account the effect of the confined stress on fatigue strength of plain concrete. The present study indicates that the fatigue failure is greatly influenced by the sequence of applied variable-amplitude fatigue loading, and Miner’s rule is inapplicable to predict the residual fatigue life, especially in the sequence of low to high. The present research also shows that the exponent d of the Corten-Dolan’s damage formula is a constant depending on the materials and the levels of load spectrum, and d can be determined through the two-stage fatigue tests. The residual fatigue lives predicted by Corten-Dolan’s damage formula are found to be in good agreement with the results of the experiments.展开更多
Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0...Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.展开更多
The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm x 100 mm x 100 mm specimens of ordinary strength co...The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm x 100 mm x 100 mm specimens of ordinary strength concrete are tested under constant- or variable-amplitude fatigue loading and lateral confinement pressure in two orthogonal directions. A fatigue equation is developed by modifying the classical Aas-Jakobsen S-N equation for taking into account the effect of the confined stress on fatigue strength of plain concrete. The results of variable-amplitude fatigue tests indicate that the linear damage theory proposed by Palmgren and Miner is unreasonable in the biaxial stress state. A nonlinear cumulative damage model that could model the effects of the magnitude and sequence of variable-amplitude fatigue loading and lateral confinement pressure is proposed on the basis of the evolution laws of the residual strains in the longitudinal direction during fatigue tests. The residual fatigue. life predicted by this model is found to be in good agreement with the results of the experimental research.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50078010).
文摘The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength concrete were tested with constant-or variable-amplitude cyclic compression and lateral confinement pressure in two orthogonal directions. A fatigue equation was gained by modifying the classical Aas-Jakobsen S-N equation and used for taking into account the effect of the confined stress on fatigue strength of plain concrete. The present study indicates that the fatigue failure is greatly influenced by the sequence of applied variable-amplitude fatigue loading, and Miner’s rule is inapplicable to predict the residual fatigue life, especially in the sequence of low to high. The present research also shows that the exponent d of the Corten-Dolan’s damage formula is a constant depending on the materials and the levels of load spectrum, and d can be determined through the two-stage fatigue tests. The residual fatigue lives predicted by Corten-Dolan’s damage formula are found to be in good agreement with the results of the experiments.
文摘Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.50078010)
文摘The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm x 100 mm x 100 mm specimens of ordinary strength concrete are tested under constant- or variable-amplitude fatigue loading and lateral confinement pressure in two orthogonal directions. A fatigue equation is developed by modifying the classical Aas-Jakobsen S-N equation for taking into account the effect of the confined stress on fatigue strength of plain concrete. The results of variable-amplitude fatigue tests indicate that the linear damage theory proposed by Palmgren and Miner is unreasonable in the biaxial stress state. A nonlinear cumulative damage model that could model the effects of the magnitude and sequence of variable-amplitude fatigue loading and lateral confinement pressure is proposed on the basis of the evolution laws of the residual strains in the longitudinal direction during fatigue tests. The residual fatigue. life predicted by this model is found to be in good agreement with the results of the experimental research.