Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (...Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (International Federation for Prestressing) models used to predict creep and shrinkage of concrete. In the currently used Polish concrete bridge code, modified CEB-FIP 1970 recommendations are used. At the time the standard was implemented, it introduced simple methods for the evaluation of final creep coefficients and shrinkage strains. It was sufficient for simple bridge structures and concrete technology used at that times. As modern bridge structures have become increasingly complex with variable construction techniques and developing concrete technology, the implementation of Eurocode 2 is necessary as it gives more practical and accurate methods for the prediction of creep and shrinkage effects. A comparative analysis of the time-dependent deformation of concrete included in Eurocode 2 and in Polish Bridge Codes is pointing out that there is a necessity for more adequate criteria for the rapidly growing concrete bridge stock in Poland.展开更多
Self-compacting concrete (SCC) is flowing in nature and hence viscosity modified agent (VMA) or higher amount of binder is used for stability of mix. The mix proportion of SCC is also different from normal vibrated co...Self-compacting concrete (SCC) is flowing in nature and hence viscosity modified agent (VMA) or higher amount of binder is used for stability of mix. The mix proportion of SCC is also different from normal vibrated concrete (NC). This modifies the properties of concrete at fresh as well as at hardened state. Three mixes, one VMA type SCC, one powder type SCC and one NC, are considered with identical water to binder ratio. Properties at fresh state such as workability and segregation resistance and at hardened stage such as compressive strength, elastic modulus, shrinkage, creep and elastic shortening are determined and compared. Powder type SCC shows superior properties at fresh stage. Also compressive strength of powder type SCC is found better than that of VMA SCC and NC. Observations show more shrinkage, elastic shortening and creep for powder type SCC as compared with VMA SCC and NC.展开更多
In the structures whose long-term behavior should be monitored and controlled, creep and shrinkage effects have to be included precisely in the analysis and design procedures. Creep and shrinkage, vary with the consti...In the structures whose long-term behavior should be monitored and controlled, creep and shrinkage effects have to be included precisely in the analysis and design procedures. Creep and shrinkage, vary with the constituent and mixtures proportions, and depend on the curing conditions and work environment as well. Self-compacting concrete (SCC) contains combinations of various components, such as aggregate, cement, superplasticizer, water-reducing agent and other ingredients which affect the properties of the SCC including creep and shrinkage of the SCC. Hence, the realistic prediction creep and shrinkage strains of SCC are an important requirement of the design process of this type of concrete structures. In this study, three proposed creep models and four shrinkage models available in the literature are compared with the measured results of 52 mixtures for creep and 165 mixtures for shrinkage of SCC. The influence of various parameters, such as mixture design, cement content, filler content, aggregate content, and water cement ratio (w/c) on the creep and shrinkage of SCC are also compared and discussed.展开更多
The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength con...The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS- HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term beh...Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.展开更多
A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in re...A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in restrained condition at early ages. The shrinkage stress and the tensile creep behavior of HSC at early ages were investigated. The influence of W/C ratio and curing conditions on the early-age shrinkage stress and tensile creep was evaluated. It was found that the lower W/C ratio and drying curing condition resulted in higher shrinkage stress, stress induced tensile creep and greater cracking tendency.展开更多
The building industry has experienced in recent years a strong growth in demand in general and in the case of reinforced concrete buildings this increase has been more marked. This fact has also contributed to acceler...The building industry has experienced in recent years a strong growth in demand in general and in the case of reinforced concrete buildings this increase has been more marked. This fact has also contributed to accelerate all stages of the production process of these constructions with more pronounced effects on the methodologies used in the constructive steps that influence directly the structural design of the building. Structures loaded at ever earlier ages, in which the strength and deformation properties of materials are not yet sufficiently mature. It is a variable that needs to be taken into account already in the design phase so that the concrete structure behaves within acceptable level of reliability taking into account design code recommendations for service life. To understand the importance of constructive effects and to assess its magnitude in the execution of reinforced concrete buildings, this paper presents result from nonlinear analyses using finite element method adopting an approach commonly referred as staged construction applied to a typical building found in the practice. The effects of creep and shrinkage were considered and the results obtained demonstrate that the strains due to constructive effects can, in certain cases, assume representative values which, if ignored, can lead to important pathologies in the building.展开更多
Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by c...Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by concrete shrinkage and creep, but there have been no studies on how these factors exactly influence the load distributions and to what degree these influences exist. This paper analyzes the influences of concrete shrinkage, creep, and temperature on the load re-distributions among slabs. Although these factors may all lead to load re-distribution, the results show that the influence of concrete shrinkage can be neglected. Simulations indicate that shrinkage only reduces slab loads by a maximum of 1.1%. Creep, however, may reduce the maximum slab load by from 3% to 16% for common construction schemes. More importantly, temperature variations between day and night can cause load fluctuation as large as 31.6%. This analysis can, therefore, assist site engineers to more accurately estimate slab loads for construction planning.展开更多
This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that...This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials (w/cm) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.展开更多
In this paper,a general finite-element software is used to calculate the creep and shrinkage of concrete in CFST arch bridge. The bridge’s spatial model is founded. The cross-section stress redistribution of the arch...In this paper,a general finite-element software is used to calculate the creep and shrinkage of concrete in CFST arch bridge. The bridge’s spatial model is founded. The cross-section stress redistribution of the arch ribs is researched. The analysis results show that the creep and shrinkage has a great influence upon the structure forces and the stress of any controlled cross-section. The cross-stress redistribution is very obvious. The creep and shrinkage of concrete has little influence upon the structure axial force,but has a great influence upon the bending moment,The forces and the stress of the steel tube have been increased but those of the concrete have been reduced because of the creep and shrinkage. The bending moment of the top of the arch has increased obviously. Engineers should be careful about this phenomenon.展开更多
为了研究桩撑支护的深基坑在开挖过程中混凝土支撑的轴力特性,本文以珠海地区深基坑为典型案例,分析了基坑开挖过程中支撑轴力监测值的时序特征,研究了计算值与监测值之间的关系。针对轴力现场监测值超过警戒值、基坑未开挖时轴力持续...为了研究桩撑支护的深基坑在开挖过程中混凝土支撑的轴力特性,本文以珠海地区深基坑为典型案例,分析了基坑开挖过程中支撑轴力监测值的时序特征,研究了计算值与监测值之间的关系。针对轴力现场监测值超过警戒值、基坑未开挖时轴力持续增加等情况,从荷载、温度、徐变和收缩4个方面进行了分析,揭示了基坑在开挖过程中支撑轴力的演化机制。研究表明:(1)随着基坑开挖深度的增加,支撑轴力均表现出增大的趋势;基坑开挖到底后,第1、2层支撑轴力现场监测值是理论计算值的1.67~3.52倍。(2)温度对轴力有明显的影响,达68 k N/℃;收缩及徐变的影响更大,约为轴力现场监测值的1/3。(3)根据拆撑前后的实测数据,切断支撑消除外荷载后,应力计仍能测到轴力,约为未切断前轴力的60%。本文研究结果可为深基坑支撑设计、施工和监测提供参考。展开更多
文摘Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (International Federation for Prestressing) models used to predict creep and shrinkage of concrete. In the currently used Polish concrete bridge code, modified CEB-FIP 1970 recommendations are used. At the time the standard was implemented, it introduced simple methods for the evaluation of final creep coefficients and shrinkage strains. It was sufficient for simple bridge structures and concrete technology used at that times. As modern bridge structures have become increasingly complex with variable construction techniques and developing concrete technology, the implementation of Eurocode 2 is necessary as it gives more practical and accurate methods for the prediction of creep and shrinkage effects. A comparative analysis of the time-dependent deformation of concrete included in Eurocode 2 and in Polish Bridge Codes is pointing out that there is a necessity for more adequate criteria for the rapidly growing concrete bridge stock in Poland.
文摘Self-compacting concrete (SCC) is flowing in nature and hence viscosity modified agent (VMA) or higher amount of binder is used for stability of mix. The mix proportion of SCC is also different from normal vibrated concrete (NC). This modifies the properties of concrete at fresh as well as at hardened state. Three mixes, one VMA type SCC, one powder type SCC and one NC, are considered with identical water to binder ratio. Properties at fresh state such as workability and segregation resistance and at hardened stage such as compressive strength, elastic modulus, shrinkage, creep and elastic shortening are determined and compared. Powder type SCC shows superior properties at fresh stage. Also compressive strength of powder type SCC is found better than that of VMA SCC and NC. Observations show more shrinkage, elastic shortening and creep for powder type SCC as compared with VMA SCC and NC.
文摘In the structures whose long-term behavior should be monitored and controlled, creep and shrinkage effects have to be included precisely in the analysis and design procedures. Creep and shrinkage, vary with the constituent and mixtures proportions, and depend on the curing conditions and work environment as well. Self-compacting concrete (SCC) contains combinations of various components, such as aggregate, cement, superplasticizer, water-reducing agent and other ingredients which affect the properties of the SCC including creep and shrinkage of the SCC. Hence, the realistic prediction creep and shrinkage strains of SCC are an important requirement of the design process of this type of concrete structures. In this study, three proposed creep models and four shrinkage models available in the literature are compared with the measured results of 52 mixtures for creep and 165 mixtures for shrinkage of SCC. The influence of various parameters, such as mixture design, cement content, filler content, aggregate content, and water cement ratio (w/c) on the creep and shrinkage of SCC are also compared and discussed.
基金the National West Communication Construction Technology Project(No.200331881106)
文摘The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS- HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
基金Project(50278097) supported by the National Natural Science Foundation of China
文摘Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.
基金the National Natural Science Foundation of China(No.50408016)
文摘A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in restrained condition at early ages. The shrinkage stress and the tensile creep behavior of HSC at early ages were investigated. The influence of W/C ratio and curing conditions on the early-age shrinkage stress and tensile creep was evaluated. It was found that the lower W/C ratio and drying curing condition resulted in higher shrinkage stress, stress induced tensile creep and greater cracking tendency.
文摘The building industry has experienced in recent years a strong growth in demand in general and in the case of reinforced concrete buildings this increase has been more marked. This fact has also contributed to accelerate all stages of the production process of these constructions with more pronounced effects on the methodologies used in the constructive steps that influence directly the structural design of the building. Structures loaded at ever earlier ages, in which the strength and deformation properties of materials are not yet sufficiently mature. It is a variable that needs to be taken into account already in the design phase so that the concrete structure behaves within acceptable level of reliability taking into account design code recommendations for service life. To understand the importance of constructive effects and to assess its magnitude in the execution of reinforced concrete buildings, this paper presents result from nonlinear analyses using finite element method adopting an approach commonly referred as staged construction applied to a typical building found in the practice. The effects of creep and shrinkage were considered and the results obtained demonstrate that the strains due to constructive effects can, in certain cases, assume representative values which, if ignored, can lead to important pathologies in the building.
基金Supported by the National Nature Science Foundation of China (Nos.50378051,70172005,and 70572007)Excellent Young Teacher Program of Ministry of Education of Chinathe National Science and Technology Planning Project (No.2006BAJ01B04-03)
文摘Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by concrete shrinkage and creep, but there have been no studies on how these factors exactly influence the load distributions and to what degree these influences exist. This paper analyzes the influences of concrete shrinkage, creep, and temperature on the load re-distributions among slabs. Although these factors may all lead to load re-distribution, the results show that the influence of concrete shrinkage can be neglected. Simulations indicate that shrinkage only reduces slab loads by a maximum of 1.1%. Creep, however, may reduce the maximum slab load by from 3% to 16% for common construction schemes. More importantly, temperature variations between day and night can cause load fluctuation as large as 31.6%. This analysis can, therefore, assist site engineers to more accurately estimate slab loads for construction planning.
文摘This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials (w/cm) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.
文摘In this paper,a general finite-element software is used to calculate the creep and shrinkage of concrete in CFST arch bridge. The bridge’s spatial model is founded. The cross-section stress redistribution of the arch ribs is researched. The analysis results show that the creep and shrinkage has a great influence upon the structure forces and the stress of any controlled cross-section. The cross-stress redistribution is very obvious. The creep and shrinkage of concrete has little influence upon the structure axial force,but has a great influence upon the bending moment,The forces and the stress of the steel tube have been increased but those of the concrete have been reduced because of the creep and shrinkage. The bending moment of the top of the arch has increased obviously. Engineers should be careful about this phenomenon.
文摘为了研究桩撑支护的深基坑在开挖过程中混凝土支撑的轴力特性,本文以珠海地区深基坑为典型案例,分析了基坑开挖过程中支撑轴力监测值的时序特征,研究了计算值与监测值之间的关系。针对轴力现场监测值超过警戒值、基坑未开挖时轴力持续增加等情况,从荷载、温度、徐变和收缩4个方面进行了分析,揭示了基坑在开挖过程中支撑轴力的演化机制。研究表明:(1)随着基坑开挖深度的增加,支撑轴力均表现出增大的趋势;基坑开挖到底后,第1、2层支撑轴力现场监测值是理论计算值的1.67~3.52倍。(2)温度对轴力有明显的影响,达68 k N/℃;收缩及徐变的影响更大,约为轴力现场监测值的1/3。(3)根据拆撑前后的实测数据,切断支撑消除外荷载后,应力计仍能测到轴力,约为未切断前轴力的60%。本文研究结果可为深基坑支撑设计、施工和监测提供参考。