Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as...Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.展开更多
In pit excavation,cement is introduced into ground by deep mixing method to form an improved soil raft below final formation level to diminish deflection of retaining wall and effect on surrounding structure.Owning to...In pit excavation,cement is introduced into ground by deep mixing method to form an improved soil raft below final formation level to diminish deflection of retaining wall and effect on surrounding structure.Owning to complicated site conditions and improper workmanship,there are always some regions left untreated in the embedded improved soil raft.In this work,Several schemes of cement-soil mixed piles arrangement are modeled in order to discuss the effect of different cement-soil reinforced regions on protection for adjacent running tunnels.Finite element results show that:when lateral regions above tunnels are not enhanced by cement-soil mixed piles,effect of enlarging vertical enhanced regions around tunnels on diminishing lateral displacement of tunnel is really small;enhancing the lateral regions next to retaining wall is more effective in reducing the deflection of tunnel and retaining wall;uplifting of tunnel under the middle pit mainly depends on lateral reinforced regions and lateral displacements of retaining wall;as cement-soil mixed piles near retaining wall in east pit are removed during east pit excavation,effect of cement-soil mixed piles in east pit on reducing the final wall deflection can be neglected;upward shaft resistances are exerted along left side of diaphragm wall during excavation,which helps to reduce the wall deflection;positive effect of single-head cement-soil mixed piles in east pit is to decreasing the uplifting of soil inside east pit.Double-head cement-soil mixed piles arranged in"T"shape decrease the effect of east pit excavation on tunnels under middle pit apparently.展开更多
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.
文摘Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.
基金Supported by the National Natural Science Foundation of China(Grant No.51208071)
文摘In pit excavation,cement is introduced into ground by deep mixing method to form an improved soil raft below final formation level to diminish deflection of retaining wall and effect on surrounding structure.Owning to complicated site conditions and improper workmanship,there are always some regions left untreated in the embedded improved soil raft.In this work,Several schemes of cement-soil mixed piles arrangement are modeled in order to discuss the effect of different cement-soil reinforced regions on protection for adjacent running tunnels.Finite element results show that:when lateral regions above tunnels are not enhanced by cement-soil mixed piles,effect of enlarging vertical enhanced regions around tunnels on diminishing lateral displacement of tunnel is really small;enhancing the lateral regions next to retaining wall is more effective in reducing the deflection of tunnel and retaining wall;uplifting of tunnel under the middle pit mainly depends on lateral reinforced regions and lateral displacements of retaining wall;as cement-soil mixed piles near retaining wall in east pit are removed during east pit excavation,effect of cement-soil mixed piles in east pit on reducing the final wall deflection can be neglected;upward shaft resistances are exerted along left side of diaphragm wall during excavation,which helps to reduce the wall deflection;positive effect of single-head cement-soil mixed piles in east pit is to decreasing the uplifting of soil inside east pit.Double-head cement-soil mixed piles arranged in"T"shape decrease the effect of east pit excavation on tunnels under middle pit apparently.