期刊文献+
共找到1,742篇文章
< 1 2 88 >
每页显示 20 50 100
Mechanical behaviors of steel reinforced ECC / concrete composite columns under combined vertical and horizontal loading 被引量:7
1
作者 单奇峰 潘金龙 陈俊涵 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期259-265,共7页
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit... In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application. 展开更多
关键词 engineered cementitious composites ECC ECC/RC composite columns compression-bending behavior numerical analysis parametric analysis
下载PDF
Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction 被引量:5
2
作者 T.Shenthan R.Nashed +1 位作者 S.Thevanayagam G.R.Martin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期39-50,共12页
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti... The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils. 展开更多
关键词 liquefaction mitigation silty soils composite stone columns dynamic compaction
下载PDF
Seismic performance of recycled concrete-filled square steel tube columns 被引量:9
3
作者 Chen Zongping Jing Chenggui +1 位作者 Xu Jinjun Zhang Xianggang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期119-130,共12页
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic later... An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance. 展开更多
关键词 recycled concrete-filled square steel tube (RCFST) column replacement percentage cyclic loading seismicperformance
下载PDF
Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns 被引量:7
4
作者 刘兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期454-458,共5页
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit... The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results. 展开更多
关键词 columnS concrete-filled steel tubes (CFST) fiber reinforced polymer (FRP) CONFINEMENT bearing capacity.
下载PDF
Seismic Behavior of Diaphragm-Through Connections of Concrete-Filled Square Steel Tubular Columns and H-Shaped Steel Beams 被引量:6
5
作者 荣彬 陈志华 +1 位作者 Apostolos Fafitis 苗纪奎 《Transactions of Tianjin University》 EI CAS 2013年第3期195-201,共7页
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us... Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections. 展开更多
关键词 concrete-filled square STEEL TUBULAR column H-shaped STEEL beam diaphragm-through connection seismic behavior load transfer mechanism
下载PDF
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:8
6
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ECC) ECC/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
下载PDF
Axial Compression Behavior and Analytical Method of L-Shaped Column Composed of Concrete-Filled Square Steel Tubes 被引量:5
7
作者 荣彬 陈志华 +1 位作者 APOSTOLOS Fafitis 杨楠 《Transactions of Tianjin University》 EI CAS 2012年第3期180-187,共8页
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper... Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis. 展开更多
关键词 L-shaped column concrete-filled square steel tube axial compression experiment finite element analy-sis analytical method
下载PDF
Influence of Axial Load Ratio on Shear Behavior of Through-Diaphragm Connections of Concrete-Filled Square Steel Tubular Columns 被引量:2
8
作者 张广泰 韩建红 +1 位作者 荣彬 Apostolos Fafitis 《Transactions of Tianjin University》 EI CAS 2015年第4期341-346,共6页
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c... Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections. 展开更多
关键词 through-diaphragm connection concrete-filled square steel TUBULAR column AXIAL load ratio shearbearing capacity DUCTILITY
下载PDF
Behavior of slender steel concrete composite columns in eccentric loading 被引量:1
9
作者 起根田 张孟喜 李永和 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期481-488,共8页
Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The l... Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The load-carrying capacity is reduced with increased slenderness ratio and eccentricity. Concrete strength has no obvious influence on eccentrically loaded columns. Then, a nonlinear numerical method of pin-ended slender columns is also presented. This method is applicable for determining the material failure load or buckling failure load of a slender steel reinforced concrete composite column. In this method both material and geometric nonlinearities are taken into account. The results of numerical analysis accord well with the test results. The test results are also compared with the results predicted by ACI318-05 and the China Specifications. 展开更多
关键词 steel concrete composite column BEHAVIOR nonlinear analysis
下载PDF
Bearing capacity of composite columns reinforced by concrete filled steel tube 被引量:1
10
作者 韦建刚 ZHU Pu CHEN Bao-chun 《Journal of Chongqing University》 CAS 2013年第1期27-34,共8页
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance ... In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe. 展开更多
关键词 concrete filled steel tube composite column position factor TEST FORMULA
下载PDF
Mechanical Behavior of Rectangular Steel-Reinforced ECC/Concrete Composite Column under Eccentric Compression 被引量:2
11
作者 潘金龙 鲁冰 +2 位作者 顾大伟 夏正昊 夏天阳 《Transactions of Tianjin University》 EI CAS 2015年第3期269-277,共9页
In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite (ECC) is introduced to partially subs... In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite (ECC) is introduced to partially substitute concrete in the edge zone of reinforced concrete columns and form reinforced ECC/concrete composite columns. Firstly, based on the assumption of plane remaining plane and the simplified constitutive models, the calculation method of the load-carrying capacity of reinforced ECC/concrete columns is proposed. The stress and strain distribu- tions and crack propagation of the composite columns in different states of eccentric compressive loading are ana- lyzed. Then, nonlinear finite element analysis is conducted to study the mechanical performance of reinforced ECC/concrete composite columns with rectangular cross section. It is found that the simulation results are in good agreement with the theoretical results, indicating that the proposed method for calculating the load-carrying capacity of concrete/ECC composite columns is valid. Finally, based on the proposed method, the effects of ECC thickness, com- pressive strength of concrete and longitudinal reinforcement ratio on the mechanical performance of reinforced ECC/ concrete composite columns are analyzed. Calculation results indicate that increasing the thickness of ECC layer or longitudinal reinforcement ratio can effectively increase the ultimate load-carrying capacity of the composite column with both small and large eccentricity, but increasing the strength of concrete can only increase the ultimate Ioad- carrying capacity of the composite column with small eccentricity. 展开更多
关键词 engineered cementitious composite (ECC) steel-reinforced concrete ECC/concrete composite column eccentric compression behavior ultimate load-carrying capacity
下载PDF
Low cyclic fatigue performance of concrete-filled steel tube columns 被引量:1
12
作者 秦鹏 谭杨 肖岩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4035-4042,共8页
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete... Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle. 展开更多
关键词 concrete-filled steel tubular columns low cyclic fatigue seismic performance failure mode
下载PDF
Local Tensile Strength of Connection Between H-Steel Beam Flange and Concrete-Filled Circular Column Tube with Through Diaphragm 被引量:1
13
作者 虞晓文 付功义 +2 位作者 刘兵 任涛 宋彬彬 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第3期11-16,共6页
This paper focused on investigating local tensile strength of connection between steel beam flange and concrete-filled circular column tube with through diaphragm. Three specimens were designed and tested to failure, ... This paper focused on investigating local tensile strength of connection between steel beam flange and concrete-filled circular column tube with through diaphragm. Three specimens were designed and tested to failure, and the structure behavior was studied by experiment and FEM analysis. On the basis of the results obtained, an estimation for local plastic and ultimate strengths of the connections using yield line theory was attempted, which results in a good prediction. 展开更多
关键词 concrete-filled circular column tube beam-to-column connection yield line theory FEM
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
14
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Comparison between Composite Column Using Limestone and Basalt Concrete 被引量:2
15
作者 Hamadallah Al-Baijat Andrea Benedetti 《Open Journal of Civil Engineering》 2013年第1期1-6,共6页
This research is conducted to study the experimental behavior of composite steel-concrete columns with basalt additives. Various percentages of basalt are added to the concrete mixes to investigate its effect on the t... This research is conducted to study the experimental behavior of composite steel-concrete columns with basalt additives. Various percentages of basalt are added to the concrete mixes to investigate its effect on the total axial compressive capacity of the columns. Expected failure scenarios of the columns are: concrete compressive failure, buckling of steel section, and de-bonding between steel and concrete sections. A conventional limestone composite column was used as base mix. The results of the study indicate a significant improvement in structural behavior and strength of the columns by increasing the percentage of basalt content. 展开更多
关键词 composite column BASALT MIX JORDAN
下载PDF
Behavior of eccentrically loaded concrete-filled GFRP tubular short columns
16
作者 王清湘 关宏波 阮冰峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期127-132,共6页
The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete... The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio. 展开更多
关键词 GFRP tube eccentric loading concrete short column composite structure
下载PDF
Ductility and Ultimate Capacity of Concrete-Filled Lattice Rectangular Steel Tube Columns
17
作者 Chengquan Wang Yun Zou +3 位作者 Tianqi Li Jie Ding Xiaoping Feng Tiange Lei 《Structural Durability & Health Monitoring》 EI 2018年第2期99-110,共12页
A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation c... A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility. 展开更多
关键词 Steel-concrete composite structure concrete-filled lattice rectangular steel tube column nonlinear finite element ultimate strength DUCTILITY
下载PDF
Seismic Behavior of Confined RC ColumnComposite Beam Joints
18
作者 张谦 于庆荣 +1 位作者 管俊峰 吴智敏 《Transactions of Tianjin University》 EI CAS 2014年第3期174-181,共8页
In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether... In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether to reinforce weakened flanges were used as parameters in designing these five joints. Failure characteristics, hysteretic curves, skeleton curves, ductility, energy dissipation, strength degradation, and stiffness degradation were analyzed. The test results revealed that the steel beam flanges in the joints were equivalent to the tie rod. Weakened flanges resulted in poor seismic behavior; however, the seismic behavior could be improved by increasing studs and reinforcing weakened flanges. The joint steel plate hoops, equivalent to stirrups, did not yield when the maximum load was reached, but yielded when the failure load was reached for the joints with shear failure. Increasing stud-type joints and reinforcing flange-type joints ensured good seismic behavior and met project requirements. Based on the experimental results, the failure mechanism of the joints was discussed, and the shear capacity equations of the joints was presented. 展开更多
关键词 seismic behavior JOINT confined RC column composite beam
下载PDF
An Experimental Study of Composite Columns Filled with Eucalyptus nitens Timber under Axial Compression
19
作者 Yingyao Cheng Xudong Chen +2 位作者 Huaming An Huimin Wang Kai Tao 《Journal of Renewable Materials》 SCIE EI 2023年第2期825-836,共12页
Eucalyptus nitens(E.nitens)has been much used for producing paper but also shows promise for structural applications.In this study,static compressive tests were undertaken to examine its suitability to be used in an i... Eucalyptus nitens(E.nitens)has been much used for producing paper but also shows promise for structural applications.In this study,static compressive tests were undertaken to examine its suitability to be used in an innovative composite column.The composite column was comprised of a rectangular steel tube with E.nitens timber infill.The nonlinear compressive behaviour of the composite column filled with E.nitens wood for both dry and wet conditions was examined.The same tests on rectangular steel tubes and bare dry and wet E.nitens samples were also undertaken as a comparison.For samples with different conditions,the ultimate capacity was evaluated and the effect of each condition on the compressive behaviour of the composite column was clarified.The steel tubes showed greater ductile behaviour,and more ductility was found in the wet samples.The steel tubes with E.nitens timber infill samples exhibited a greater linear elastic range connected with higher maximum loads,while the bare timber samples could support only lower maximum loads.The results from this research were promising for the use of rectangular steel tubes with E.nitens timber infill in structural applications. 展开更多
关键词 Hollow steel tubes EUCALYPTUS high moisture content composite column with timber infill compression
下载PDF
Numerical Modeling on Seismic Performance of Castellated Composite Beam⁃Reinforced Concrete Column Connection
20
作者 Hongwei Ma Junjie Wang Yang Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第2期62-73,共12页
The hybrid structure consisting of castellated composite beam and compound spiral hoop reinforced concrete column take full advantages of steel and concrete material.To popularize the structural form in real condition... The hybrid structure consisting of castellated composite beam and compound spiral hoop reinforced concrete column take full advantages of steel and concrete material.To popularize the structural form in real conditions,a beam⁃through⁃type beam⁃column connection is proposed.Two 1/2⁃scaled connection specimens were tested and three⁃dimensional finite element models of the beam⁃column connection were set up.The longitudinal reinforcements,concrete beam,and column were simulated by link and solid elements,respectively.The influences of the parameters such as expansion ratio,location of web opening,and original height of steel beam were studied.The results show that connections possessed high initial rigidity.The expansion ratio of steel beam showed more important influence on the connection’s ultimate bearing capacity.For the connection models with steel beam expansion ratio of 1.4,the maximum increment of the ultimate bearing capacity of the connection could reach 28%.In order to prevent the local buckling failure of steel beam from occurring near web opening,the expansion ratio of steel beam should not be greater than 1.3. 展开更多
关键词 castellated composite beam beam⁃column connection finite element analysis expansion ratio
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部