期刊文献+
共找到2,298篇文章
< 1 2 115 >
每页显示 20 50 100
集中配筋连接预制剪力墙抗震性能试验研究 被引量:1
1
作者 肖扬 卢谦 +3 位作者 罗小勇 陈林松 程俊峰 张璧玮 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期201-218,共18页
针对现有预制混凝土剪力墙接缝施工容错率低、混凝土现场浇筑作业量大和钢筋锚固过长等不足,提出一种使用超高性能混凝土(UHPC)的集中配筋连接预制剪力墙。通过对比1片现浇剪力墙试件、3片不同接缝形式的集中配筋连接预制剪力墙试件的... 针对现有预制混凝土剪力墙接缝施工容错率低、混凝土现场浇筑作业量大和钢筋锚固过长等不足,提出一种使用超高性能混凝土(UHPC)的集中配筋连接预制剪力墙。通过对比1片现浇剪力墙试件、3片不同接缝形式的集中配筋连接预制剪力墙试件的拟静力试验结果,揭示该类预制剪力墙的破坏规律和抗震性能、竖缝对墙体抗震性能的影响和连接钢筋的受力特点。采用ABAQUS软件对试件进行有限元模拟,分析轴压比和集中配筋率对试件抗震性能的影响。研究结果表明:预制试件与现浇试件具有相同的破坏规律,均为弯剪破坏;这2类试件的滞回曲线均较饱满,骨架曲线走势基本一致,耗能能力接近,且预制试件的最小承载力仅比现浇试件低5.6%,表明预制试件的抗震性能与现浇试件的抗震性能基本相同;竖缝对剪力墙承载力的影响较小,使剪力墙的延性和耗能能力有一定的削弱;不同竖缝形式预制墙的抗震性能相近但各有特点,竖缝形式预制墙采用UHPC出筋搭接具有更好的整体性,采用U形键槽的预制墙具有更大的刚度和更强的耗能能力;连接钢筋的应力分布具有典型受弯构件的特征;随着轴压比增加,模型的刚度和承载力不断增加,在轴压比从0.05增加到0.30时,最大的峰值荷载增幅发生在轴压比从0.05到0.10时,从承载力的提高、刚度、耗能和墙角抬高等方面考虑,试件的集中配筋率保持在90%~110%为宜。 展开更多
关键词 预制剪力墙 集中配筋 拟静力试验 UHPC(ultra-high performance concrete) 抗震性能
下载PDF
Intelligent Small Sample Defect Detection of Concrete Surface Using Novel Deep Learning Integrating Improved YOLOv5 被引量:2
2
作者 Yongming Han Lei Wang +1 位作者 Youqing Wang Zhiqiang Geng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期545-547,共3页
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p... Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality. 展开更多
关键词 CONCRETE integrating ALGORITHM
下载PDF
Utilization of Basalt Saw Mud as a Spherical Porous Functional Aggregate for the Preparation of Ordinary Structure Concrete 被引量:1
3
作者 周永祥 关青锋 +2 位作者 LENG Faguang WANG Jing LI Tianjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期364-375,共12页
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)... To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete. 展开更多
关键词 lightweight concrete civil concrete building basalt saw mud fly ash internal curing environmentally friendly
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
4
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Strong ground motion characteristics observed in the February 6,2023 M_(W)7.7 Türkiye earthquake 被引量:1
5
作者 Faisal Mehraj Wani Jayaprakash Vemuri Chenna Rajaram 《Earthquake Science》 2024年第3期241-262,共22页
Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06... Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06,2023,a devastating M_(W)7.7 earthquake struck Türkiye at 01:17 am local time(01:17 UTC).In this regard,near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures.Additionally,the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event.Moreover,the effect of Pulse-Like(PL)and Non-Pulse-Like(NPL)ground motion on a representative RC frame structure built as per the Türkiye code was investigated.The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter.Moreover,the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1.Finally,the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter,indicated that PL ground motions led to more significant damage compared to NPL ground motions. 展开更多
关键词 Pulse-Like Non-Pulse-Like 2023 Türkiye earthquake V/H ratio reinforced concrete
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
6
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle CONCRETE SEM NMR
下载PDF
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
7
作者 Jielian Zheng 《Engineering》 SCIE EI CAS CSCD 2024年第10期110-129,共20页
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ... Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed. 展开更多
关键词 Concrete-filled steel tubular arch bridges Steel-reinforced concrete arch bridges Cable-stayed fastening-hanging cantilevered assembly Non-rocky thrust abutment foundation Stiff skeleton Encasing concrete pouring Longitudinal reinforcement optimization
下载PDF
Mesoscale Mechanical Properties and Influencing Factors of Concrete under Uniaxial Tension
8
作者 CHEN Tao LI Kungang XIAO Shiyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1156-1168,共13页
Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile... Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile loads were studied using statistical results.The results indicated that the entire process of damage and failure of specimens exhibited mainly two failure types:fracture patternsⅠandⅡ.Furthermore,the influences of the aggregate content ratio,aggregate shape,aggregate size,interfacial transition zone(ITZ)strength,and porosity ratio on the concrete specimens were analyzed.The numerical simulation results showed that the elastic modulus of the concrete specimens increased approximately linearly with the aggregate volume ratio but decreased linearly with the porosity and was not affected by the ITZ strength.The tensile strength decreased with the increases in the aggregate content and porosity of the sample,but increased linearly with the ITZ strength.In addition,the aggregate shape led to a difference in the tensile strength of the concrete. 展开更多
关键词 CONCRETE mechanical behavior AGGREGATE interfacial transition zone PORE
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
9
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
10
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading.Field test data has been used to compare m... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading.Field test data has been used to compare model results for each case.The numerical modelling has been,carried out using the suitable code LS-DYNA.This code integrates blast load routine(CONWEP)for the explosive description and four different material models for the concrete including:Karagozian&Case Concrete,Winfrith,Continuous Surface Cap Model and RiedeleHiermaiereThoma models,with concrete meshing based on 10,15,and 20 mm.Six full-scale beams were tested:four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances.For calibration,field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation.Damage surfaces and the shape of rupture in the beams have been used as references for comparison.Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%.In all cases,the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect Full-scale beams
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
11
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
Evaluation of internal void related defects in reinforced concrete slab using electromagnetic wave properties
12
作者 Minju Kang Jinyoung Hong +2 位作者 Taemin Lee Doyun Kim Hajin Choi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期525-535,共11页
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ... This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods. 展开更多
关键词 GPR concrete defect electromagnetic wave relative permittivity non-destructive testing(NDT)
下载PDF
Experimental study on the size effect on the equation of state of concretes under shock loading
13
作者 Mei Li Jian Cui +2 位作者 Yanchao Shi Baijian Tang Xin Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期160-167,共8页
Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d... Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for. 展开更多
关键词 CONCRETE Equation of state Size effect Shock wave Fly-plate impact test
下载PDF
Resilience-incorporated seismic risk assessment of precast concrete frames with“dry”connections
14
作者 Wu Chenhao Tang Yuchuan +1 位作者 Cao Xuyang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期403-425,共23页
A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o... A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF. 展开更多
关键词 precast concrete frame non-emulative precast system seismic resilience seismic risk functional recovery
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
15
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau CONCRETE
下载PDF
Non-dimensional analysis on blast wave propagation in foam concrete:Minimum thickness to avoid stress enhancement
16
作者 Ya Yang Xiangzhen Kong Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期30-46,共17页
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti... Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering. 展开更多
关键词 Foam concrete Blast wave propagation Non-dimensional analysis Stress enhancement
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
17
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
18
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Comparative impact behaviours of ultra high performance concrete columns reinforced with polypropylene vs steel fibres
19
作者 Thong M.Pham Harrison Hyde +4 位作者 Maw K.Kaung Yan Zhuge Duong T.Tran Des Vlietstra Tung M.Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期138-153,共16页
Polypropylene(PP)fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads,with limited investigations on capacity ... Polypropylene(PP)fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads,with limited investigations on capacity improvement.This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC)columns.Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure.The addition of steel or PP fibres affected the impact responses differently.Steel fibres considerably increased the peak impact force(up to 18%)while PP micro-fibres slightly increased the peak(3%-4%).FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20impact)and substantially improved the displacement recovery by up to 100%(under 20impact).FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption,which is different from the effect of PP-macro fibre reported in the literature.The optimal fibre content for micro-PP fibres is 1%due to its minimal fibre usage and low peak and residual displacement.This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism,enhancing ductility and toughness under impact loading,and advancing the understanding of the role of fibres in structural performance. 展开更多
关键词 Ultra high-performance concrete Steel fibre Polypropylene micro-fibre Fibre volume fraction Impact loading Pendulum tests COLUMNS
下载PDF
Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar
20
作者 Yadong Bian Xuan Qiu +2 位作者 Jihui Zhao Zhong Li Jiana Ouyang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期45-58,共14页
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero... In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar. 展开更多
关键词 Recycled concrete fine powder cement mortar CARBONIZATION SULFATE chloride ion DURABILITY
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部