期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
A transient production prediction method for tight condensate gas wells with multiphase flow
1
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
Numerical Simulation of Oil and Gas Two-Phase Flow in Deep Condensate Gas Reservoirs in Bohai Buried Hills
2
作者 Zhennan Gao Xianbo Luo +2 位作者 Lei Zhang Qi Cheng Yingxu He 《Open Journal of Applied Sciences》 2023年第11期2068-2079,共12页
The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condens... The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condensate liquid. During the early stage of depletion development, the production gas-oil ratio (GOR) and production capacity remain relatively stable, which is inconsistent with the conventional reverse condensate seepage law. In view of the static and dynamic conflict in development and production, indoor high-temperature and high-pressure PVT experiment was carried out to reveal the mist-like condensation phenomenon of fluids in the BZ19-6 formation. And the seepage characteristics of condensate gas reservoirs with various degrees of depletion under the condition of HTHP were analyzed based on production performance. The change rule of fluid phase state was analyzed in response to the characterization difficulties of the seepage mechanism. The fluid state was described using the miscible mechanism. And the interphase permeability interpolation coefficient was introduced based on interfacial tension. By doing so, the accurate characterization of the “single-phase flow of condensate gas-near-miscible mist-like quasi single-phase flow-oil-gas two-phase flow” during the development process was achieved. Then the accurate fitting of key indicators for oilfield development was completed, and the distribution law of formation pressure and the law of condensate oil precipitation under different reservoir conditions are obtained. Based on research results, the regulation strategy of variable flow rate production was developed. Currently, the work system has been optimized for 11 wells, achieving a “zero increase” in the GOS of the gas field and an annual oil increase of 22,000 cubic meters. 展开更多
关键词 High Temperature and High Pressure condensate gas Reservoirs Mist Flow Characterization of Seepage Flow History Match Production Regulation
下载PDF
Change of phase state during multi-cycle injection and production process of condensate gas reservoir based underground gas storage 被引量:1
3
作者 TANG Yong LONG Keji +5 位作者 WANG Jieming XU Hongcheng WANG Yong HE Youwei SHI Lei ZHU Huayin 《Petroleum Exploration and Development》 CSCD 2021年第2期395-406,共12页
Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cy... Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cycles of injection and production of underground gas storage(UGS)rebuilt from condensate gas reservoir to study the phase characteristics of produced and remaining fluids during multi-cycles of injection and production.Take condensate reservoir gas storage as example,the composition of produced fluid and remaining fluid,phase state of remaining fluid,retrograde condensate saturation and condensate recovery degree in the process of multi-cycles of injection-production were studied through multi-cycle injection-production experiment and phase equilibrium theory simulation.The injected gas could greatly improve the recovery of condensate oil in the gas reservoir,and the condensate oil recovery increased by 42% after 5 cycles of injection and production;the injected gas had significant evaporative and extraction effects on the condensate,especially during the first two cycles;the condensate oil saturation of the formation decreased with the increase of injection-production cycles,and the condensate oil saturation after multi-cycles of injection-production was almost 0;the storage capacity increased by about 7.5% after multi-cycles of injection and production,and the cumulative gas injection volume in the 5 th cycle increased by about 25%compared with that in the 1 st cycle. 展开更多
关键词 condensate gas reservoir gas storage phase characteristics multi-cycles of injection-production EOR
下载PDF
Hydrocarbon Charging and Accumulation Process of the Large Bozhong19-6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub-Basin,Bohai Bay Basin,China
4
作者 Quanyun Miao Changgui Xu +4 位作者 Fang Hao Minjunshi Xie Qi Wang Jie Yin Huayao Zou 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期613-630,共18页
The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydroc... The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydrocarbon charging events.The hydrocarbon migration and accumulation process of“early oil and late gas”has occurred in the current reservoirs.At the end of the sedimentation of the Guantao Formation(N_(1)g,∼12 Ma),the reservoirs began to fill with first stage low-moderate mature crude oil.At the late stage of the Lower Minghuazhen Formation(N_(1)ml)(∼6.7 Ma),the reservoirs were largely charged with second stage high mature crude oil.Since the deposition of the upper Minghuazhen Formation(N_(2)m^(u),∼5.1 Ma),the paleo-oil reservoirs were transformed into shallow Neogene reservoirs due to the reactivation of basement faults.From the late stage of the N_(2)m^(u)to the present day(∼2.8–0 Ma),the reservoirs were rapidly filled by natural gas within a short period.In addition,analysis of the formation of the reservoir bitumen and the conspicuous loss of the lower molecular weight n-alkanes in the crude oil reveal that the injection of a large amount of gas in the late stage caused gas flushing of the early charged oil. 展开更多
关键词 Bohai Bay Basin BZ19-6 condensate gas reservoirs fluid inclusions hydrocarbon charging and accumulation petroleum geology
原文传递
Phase behavior of gas condensate in porous media using real-time computed tomography scanning
5
作者 Wen-Long Jing Lei Zhang +5 位作者 Ai-Fen Li Jun-Jie Zhong Hai Sun Yong-Fei Yang Yu-Long Cheng Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1032-1043,共12页
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp... The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs. 展开更多
关键词 gas condensate Pressure depletion Real-time micro-computed tomography scanning Distribution of condensate liquid
下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
6
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
A new model simulating the development of gas condensate reservoirs
7
作者 Yang Yang Zengmin Lun +2 位作者 Rui Wang Maolei Cui Wei Hu 《Energy Geoscience》 EI 2024年第1期239-248,共10页
A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model ... A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model predicts well performance,including bottom-hole pressure,oil/gas production rate,oil/gas recovery,gaseoil ratio,and the change in produced fluid composition.It also calculates dynamic characters,such as the change of pressure field and oil/gas saturation field during the development of gas condensate reservoirs.The model is applicable to different boundary conditions(both constant-pressure and sealed boundary)and different production modes(both constant-pressure and constant-volume production modes).Model validation attempted using numerical simulation results for sealed boundary conditions with constant-pressure production mode has shown a relatively good match,proving its validity.For constant-pressure boundary conditions with constant-volume production mode,four stages are defined according to the dynamic behavior of production performance in the development of gas condensate reservoirs. 展开更多
关键词 gas condensate reservoir Phase behavior Numerical simulation Pseudo-pressure method
下载PDF
Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China
8
作者 WANG Qinghua 《Petroleum Exploration and Development》 SCIE 2023年第6期1295-1307,共13页
To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, Chin... To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, China, the main strike-slip faults in and around well FD1 in the basin were analyzed in terms of sedimentary facies, sequence stratigraphy, intraplatform shoal reservoir property, and oil and gas origins, based on drilling data. The Yingshan Formation intraplatform shoal between the main strike-slip faults is superimposed with low-order faults to form a new type of hydrocarbon play. Firstly, hydrocarbons generated from the Lower Cambrian Yuertusi Formation source rocks vertically migrated into the second member of Yingshan Formation through the main strike-slip faults, and then migrated laterally until they were accumulated. A small amount of oil from Well FD1 came from the Yuertusi Formation source rocks in the mature stage, and a large amount of gas originated from oil cracking in the ultra-deep reservoirs. Therefore, the secondary gas condensate reservoir in Well FD1 is characterized by high gas to oil ratio, dry gas (dryness coefficient being 0.970) and hybrid origin. This new type of hydrocarbon play characterized by intraplatform shoal and low-order fault suggests a prospect of continuous hydrocarbon-bearing area in Fuman Oilfield, which will expand the ultrap-deep oil and gas exploration in the oilfield. 展开更多
关键词 low-order fault intraplatform shoal ultra-deep Yingshan Formation oil cracked gas condensate gas Fuman Oilfield Tarim Basin
下载PDF
Test of the Relative Permeability Curve of a Gas and Oil Condensate System and its Effect on the Recovery of Oil and Gas 被引量:5
9
作者 郭平 李海平 +2 位作者 宋文杰 江同文 王小强 《Petroleum Science》 SCIE CAS CSCD 2004年第4期36-41,65,共7页
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ... The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil. 展开更多
关键词 Equilibrium condensate oil and gas condensate gas relative permeability curve long cores condensate oil recovery
下载PDF
Origins and Differences in Condensate Gas Reservoirs between East and West of Tazhong Uplift in the Ordovician Tarim Basin, NW China 被引量:1
10
作者 Yinglu Pan Bingsong Yu +1 位作者 Baotao Zhang Guangyou Zhu 《Journal of Earth Science》 SCIE CAS CSCD 2017年第2期367-380,共14页
The Ordovician of the Tazhong area in the Tarim Basin has suffered multi-cyclic hydrocarbon charging, making Tazhong a typical condensate gas district. In this paper, production and test data were gathered and a detai... The Ordovician of the Tazhong area in the Tarim Basin has suffered multi-cyclic hydrocarbon charging, making Tazhong a typical condensate gas district. In this paper, production and test data were gathered and a detailed comparison was conducted on the geology and the fluid distribution and characteristics between the eastern and western Tazhong area. Eastern and western regions exhibit significant differences in tectonic structure, fluid distribution, and physical-chemical properties of oil and gas. Compared with the eastern region, the western part has a greater development of discordogenic gas associated with strike-slip faults which, combined with the Tazhong No. 1 fault zone, control the fluid distribution. The eastern region is mainly controlled by the Tazhong No. 1 fault zone. Fluid have markedly homogeneous properties in the east, but are heterogeneous in the west. The origins of oil and gas are different between the east and the west. In the east, hydrocarbons are mainly from Ordovician source rocks and natural gas is mostly derived from kerogen pyrolysis. In the west, the hydrocarbons mainly originated from Cambrian source rocks, and the gas was mostly generated by crude oil cracking. In sum, the east region is dominated by primary condensate gas reservoirs, and the western region is dominated by secondary condensate gas reservoirs. Because of the different geological settings and fluid physical properties, differences in the condensate gas reservoirs in the eastern and the western Tazhong area have been analyzed, and appropriate formation mechanisms for condensate gas origins are established. 展开更多
关键词 condensate gas reservoir origin Ordovician carbonate Tazhong area
原文传递
Gas Condensate Two Phase Flow Performance in Porous Media Considering Capillary Number and Non-Darcy Effects
11
作者 覃斌 李相方 程时清 《Petroleum Science》 SCIE CAS CSCD 2004年第3期49-55,共7页
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne... Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods. 展开更多
关键词 gas condensate two-phase flow porous media capillary number non-Darcy effect
下载PDF
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir 被引量:3
12
作者 Min Wang Shengnan Chen Menglu Lin 《Petroleum Science》 SCIE CAS CSCD 2018年第2期305-318,共14页
The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion o... The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion of gas leaves the valuable condensate behind. In this paper, three enhanced gas recovery (EGR) methods including produced gas injection, CO2 injection and water injection are investigated to increase the well productivity for a tight gas condensate reservoir in the Montney Formation, Canada. The production performance of the three EGR methods is compared and their economic feasibility is evaluated. Sensitivity analysis of the key factors such as primary production duration, bottom-hole pressures, and fracture conductivity is conducted and their effects on the well production performance are analyzed. Results show that, compared with the simple depletion method, both the cumulative gas and condensate production increase with fluids injected. Produced gas injection leads to both a higher gas and condensate production compared with those of the CO2 injection, while waterflooding suffers from injection difficulty and the corresponding low sweep efficiency. Meanwhile, the injection cost is lower for the produced gas injection due to the on-site available gas source and minimal transport costs, gaining more economic benefits than the other EGR methods. 展开更多
关键词 Tight gas condensate reservoirs Enhanced/improved gas recovery Produced gas injection Sensitivity study Economic benefit
下载PDF
Re-Examination of the Oil and Gas Origins in the Kekeya Gas Condensate Field,Northwest China——A Case Study of Hydrocarbon-Source Correlation Using Sophisticated Geochemical Methods 被引量:2
13
作者 GONG Deyu WANG Zhaoyun +3 位作者 LIU Gang CHEN Gang FANG Chenchen XIAO Zhongyao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期186-203,共18页
This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydr... This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general. 展开更多
关键词 Kekeya gas condensate field evaporative fractionation water washing coal-derived gas marine condensates stable carbon isotopes diamondoid hydrocarbons
下载PDF
Deliverability of wells in carbonate gas condensate reservoirs and the capillary number effect 被引量:1
14
作者 Li Yong Hu Yongle Li Baozhu Xia Jing 《Petroleum Science》 SCIE CAS CSCD 2009年第1期51-56,共6页
With the development of the Tazhong No. 1 carbonate gas condensate reservoir in China, it has become more and more important to study the characteristics of gas condensate well deliverability. A single-well radial sim... With the development of the Tazhong No. 1 carbonate gas condensate reservoir in China, it has become more and more important to study the characteristics of gas condensate well deliverability. A single-well radial simulator for dual-permeability reservoirs was established to study the influences of fluid properties, permeability, and pressure drawdown on well deliverability with and without the capillary number effect. The simulation shows that well deliverability basically maintains its initial value and is not affected by the capillary number when the formation pressure is higher than dew-point pressure. However, well deliverability drops rapidly when the formation pressure is lower than dew-point pressure. Even if the condensate dropout is very low, well deliverability without the capillary number effect reduces to 50 percent of its initial value when reservoir pressure declines to 95 percent of dew-point pressure, but well deliverability is significantly improved if the capillary number effect exists. The capillary number effect is most significant when reservoir pressure is just lower than dew point pressure, then the effect decreases; the reduction of well deliverability is mainly caused by the reduction of gas relative permeability of the matrix system near the wellbore. 展开更多
关键词 Carbonate reservoir gas condensate capillary number effect well deliverability dualporosity media
下载PDF
Gas condensate reservoirs: Characterization and calculation of dew-point pressure 被引量:1
15
作者 ALAROUJ Mutlaq ALOMAIR Osamah ELSHARKAWY Adel 《Petroleum Exploration and Development》 2020年第5期1091-1102,共12页
A large data bank of more than 700 gas-condensate samples collected from literature and experiments was established.On this basis,empirical correlations and equations of state commonly used to calculate dew-point pres... A large data bank of more than 700 gas-condensate samples collected from literature and experiments was established.On this basis,empirical correlations and equations of state commonly used to calculate dew-point pressure(DPP)were evaluated.A new model for estimating DPP was proposed.All the empirical correlations and the Peng-Robinson state equation were compared,and sensitivity of parameters was analyzed.The current standards used to identify gas condensate were evaluated and found to be not accurate enough.The Peng-Robinson state equation has no unique solution and is affected by multiple factors such as the characterization of C7+components and the splitting scheme.The Nemeth-Kennedy correlation has the highest accuracy when applied to the data bank established in this study,followed by Elsharkawy correlation and Godwin correlation.While Shokir correlation cannot be used for samples without C7+components,it is therefore the lowest in accuracy.The newly proposed model has an average absolute error,root mean square error and coefficient of determination of 7.5%,588,and 0.87,respectively,and is better than the above four correlations statistically.The proposed model proved to be more accurate and valid when compared to experimental results and simulation with the Peng-Robinson state equation. 展开更多
关键词 gas condensate reservoir dew-point pressure empirical relation equation of state
下载PDF
Application of Statistical Methods to Biomarkers for Geochemical Evaluation and Genetic Type Determination of Gas Condensates in the Persian Gulf and Coastal Fars,Southern Iran
16
作者 Mohammad Javad SEIDY Mohammad Hossein SABERI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1246-1256,共11页
In a comprehensive geochemical study,the genetic relationships among 14 samples of gas condensates from the Persian Gulf were investigated for the purpose of evaluating the respective source rocks in terms of both age... In a comprehensive geochemical study,the genetic relationships among 14 samples of gas condensates from the Persian Gulf were investigated for the purpose of evaluating the respective source rocks in terms of both age and sedimentary paleoenvironment.Chemometric analysis was used for categorization and determination of a certitude range to determine the genetic type of the condensate families in the studied basin.The samples were collected from Late Permian-Triassic reservoirs(Dalan and Kangan formations)located in 6 gasfields(gas condensate)hosting some of Iran’s most important gas/gas condensate reserves.Obtained by gas chromatography-mass spectrometry(GC-MS),a total of 16 biomarker parameters(10 maturity-related parameters and 6 sedimentary environment-related parameters)were used to evaluate the samples in terms of thermal maturity(and hence their positions in the maturity chart),the sedimentary environment of the source rock and the lithology.Application of Hierarchical Clustering Analysis(HCA)and Principal Component Analysis(PCA)to the collected data led to the categorization of the samples into three main genetic groups,Ⅰ-Ⅲ.GroupsⅠandⅢwere found to be located in the east and the west of the Persian Gulf,respectively,while GroupⅡwas developed between the two other groups. 展开更多
关键词 gas condensate satistical methods genetic linkage thermal maturation Persian Gulf Coastal Fars
下载PDF
Maximizing the Benefit of Rate Transient Analysis for Gas Condensate Reservoirs
17
作者 Mahmoud Abdo Tantawy Ahmed A.M.Elgibaly Ahmed Mohamed Farag 《Energy Engineering》 EI 2021年第5期1411-1423,共13页
In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of... In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of the gas condensate reservoirs.Therefore,the Pressure Transient Analysis(PTA)is commonly used in this case to analyze the reservoir parameters.In this paper,we are going to compare the results of both PTA and RTA of three wells in gas condensate reservoirs.The comparison showed a great match between the results of the two mentioned techniques for the first time using a reference GOR of 75,000 SCF/STB.Therefore,we concluded that we could depend on RTA instead of PTA to spare the cost associated with the PTA in the gas condensate reservoirs. 展开更多
关键词 Rate transient analysis production data analysis well testing PERMEABILITY skin factor gas condensate
下载PDF
The Degradation and Pollution of Soils on the Territory of the Kovykta Gas Condensate Field
18
作者 Irina Aleksandrovna Belozertseva 《Journal of Earth Science and Engineering》 2013年第2期131-137,共7页
In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a ... In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters. 展开更多
关键词 Degradation and pollution of soils macro- and microelement oil products mineralization of water suspension of soils gas condensate field.
下载PDF
Economic Evaluation of Hydraulic Fracturing in a Gas Condensate Reservoir Operating below Dewpoint
19
作者 Anthony Kerunwa Princewill O. Ariche Nkemakolam Chinedu Izuwa 《Open Journal of Yangtze Oil and Gas》 2020年第3期73-86,共14页
Hydraulic fracturing is among the approaches used to optimize production from a gas condensate reservoir. A detailed economic analysis is required to evaluate the profitability and feasibility of hydraulic fracturing ... Hydraulic fracturing is among the approaches used to optimize production from a gas condensate reservoir. A detailed economic analysis is required to evaluate the profitability and feasibility of hydraulic fracturing as an optimization option in a gas condensate reservoir operating below dewpoint. The objective of this research is to evaluate the economic benefits derivable from the use of hydraulic fracturing to improve gas and liquid recovery from a gas condensate reservoir operating below dewpoint. This research considers the use of four profit indicators to ascertain the profitability of hydraulic fracturing in a gas condensate reservoir operating below dewpoint by increasing the fracture halflength, fracture width and fracture permeability. The production data of the reservoir was obtained and the economic calculations done on excel spreadsheet and plots generated. The four profit indicators considered in the research are Net Present Value, Payout, Discounted Cash Flow Rate of Return and Profit per Dollar Invested. The economic justification was done by carrying out a comparative economic analysis from the result obtained when the reservoir of study was unfractured with that obtained when the reservoir was fractured at various fracture parameters. The economic analysis was done considering a royalty and tax rate of 18.5% and 30% respectively and a gas price of $2/MSCF and condensate price of $30/bbl. This is done so as to find out if the additional cost of hydraulic fracturing can be offset by the recovery from the reservoir when its pressure declined below dewpoint. The result obtained showed that the additional recovery due to hydraulic fracturing by increasing the fracture halflength, fracture width and fracture permeability was not enough to justify the application of hydraulic fracturing when the reservoir pressure declined below dewpoint. 展开更多
关键词 Economic Evaluation Fracture Halflength Proppants Profit Indicators Hydraulic Fracturing gas condensate Reservoir Dewpoint
下载PDF
Daily Variation of Natural Emission of Methane to the Atmosphere and Source Identification in the Luntai Fault Region of the Yakela Condensed Oil/Gas Field in the Tarim Basin,Xinjiang,China 被引量:7
20
作者 TANG Junhong BAO Zhengyu +1 位作者 XIANG Wu GOU Qinghong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第5期771-778,共8页
The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern C... The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir. 展开更多
关键词 condensed oil/gas field fault-controlled methane emission carbon isotopes flux chamber XINJIANG
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部