In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans...In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.展开更多
Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and ...Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and variation in cooling water temperature on heat transfer coefficient are investigated as a parametric study. Condensation process of steam has been successfully modeled by applying a user defined function (UDF) added to the commercial computational fluid dynamics (CFD) package. By analyzing the corresponding condensate contours and the curves of local heat transfer coefficient, the relationships between condensation heat transfer coefficient and various parameters of R245fa inside horizontal tube are obtained. It shows that the heat transfer coefficient increases by the increase in velocity, condensation temperature and superheat of inlet steam and the decrease in cooling water temperature. The errors between the heat transfer coefficient of simulation result and model of Wang and Shah are within ±30%. The parametric study will provide the basis for designing efficient heat exchangers of R245fa.展开更多
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bu...Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.展开更多
In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Rey...The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a...The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.展开更多
An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm...An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm at mass fluxes range of 58–246 kg m-2s-1 and saturation temperature of 38℃. Effects of mass flux, tube length on condensation heat transfer coefficient were investigated. The distribution of temperature, thickness of condensate film and local condensation heat transfer coefficient along the tube were also analyzed.. It is indicated that the entrance effect played an important role in condensation heat transfer of vertical tube, and the influence of entrance effect on average condensation heat transfer coefficients will weaken with the length of tube in the experimental condensation. The experimental results were compared with four well known correlations available in literatures, and the Chen correlation shows good agreement with the experimental data but with ±40% deviation. A new modified condensation heat transfer correlation with 12.7% mean deviation was developed to predict the condensation heat transfer coefficients in short vertical tube based on the experimental data.展开更多
The turbulence kinetic energy and heat transfer performance of air in spirally fluted tube were numerically studied at a constant wall temperature with Reynolds number(Re)between 5000 and 45000.Furthermore,the flow dy...The turbulence kinetic energy and heat transfer performance of air in spirally fluted tube were numerically studied at a constant wall temperature with Reynolds number(Re)between 5000 and 45000.Furthermore,the flow dynamics and heat transfer performance of spirally fluted tubes with five different geometric parameters as well as the effects of separation vortex and swirling wake flow on heat transfer and flow resistance were analyzed.According to the results,heat transfer is enhanced mainly because the fluid hit the windward side of the flute,thus generating a strong turbulence kinetic energy to further reconstruct the boundary layer.The second reason is that the formation of the recirculation zone between the flutes disturbs the boundary layer caused by the flow separation.With the increase of flute depth ratio(L_(d)/D),the separation vortex will become stronger and larger on the leeward side of flute.The separation vortex will break the boundary layer and improve the heat transfer capacity which is accompanied with the increase of fluid resistance.As the flute pitch length ratio(L_(p)/D)decreases,the spiral flow is strengthened,and meanwhile more wake flow is generated.The spiral flow causes little impact on enhancing heat transfer but inhibits the development of the separation vortex and fluid pulsation;in addition,the fluid resistance is reduced at the same time.The maximum value of the average Nusselt number appears when Re=5000,L_(d)/D=0.25 and L_(p)/D=1.00,which is 2.53 times the value of smooth tube.In view of the whole range of Reynolds number,the thermal performance enhancement factor indicates that L_(d)/D=0.15 and L_(p)/D=1.00 are the optimal geometric design parameters.展开更多
In this paper,the condensation heat transfer characteristics of parallel flow and counter flow inside an inclined wave-finned flat tube is investigated experimentally.The condensation heat transfer coefficients are an...In this paper,the condensation heat transfer characteristics of parallel flow and counter flow inside an inclined wave-finned flat tube is investigated experimentally.The condensation heat transfer coefficients are analyzed based on the experimental results.Results of experiments show that condensation heat transfer coefficient decreases as the temperature difference Δt=ts-tw increases and mass flow rate decreases.The parallel flow has a similar development with the counter flow,and the condensation heat transfer coefficient of counter flow is less than that of parallel flow under the same air cooling conditions.In addition,condensation heat transfer coefficient correlations are also obtained under experimental ranges.The calculations agree well with the measured data and the agreement is seen to be within ±4% for the parallel flow and ±5% for the counter flow.展开更多
To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by con...To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.展开更多
基金supported by the National Key R&D Program of China(No. 2020YFB1901405)
文摘In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.
文摘Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and variation in cooling water temperature on heat transfer coefficient are investigated as a parametric study. Condensation process of steam has been successfully modeled by applying a user defined function (UDF) added to the commercial computational fluid dynamics (CFD) package. By analyzing the corresponding condensate contours and the curves of local heat transfer coefficient, the relationships between condensation heat transfer coefficient and various parameters of R245fa inside horizontal tube are obtained. It shows that the heat transfer coefficient increases by the increase in velocity, condensation temperature and superheat of inlet steam and the decrease in cooling water temperature. The errors between the heat transfer coefficient of simulation result and model of Wang and Shah are within ±30%. The parametric study will provide the basis for designing efficient heat exchangers of R245fa.
基金Projects(xjj2013104,08143063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB706606)supported by the National Basic Research Program of China
文摘Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.
基金support by the Scientific Research Start-up Funds for introducing Talent in the Sichuan University (20822041C4014)National Science and Technology Major Project of China (2017-I-0004-0004)。
文摘The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.
文摘The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.
基金supported by National Key Technology R&D Program(2012BAB12B02)
文摘An experimental study on condensation heat transfer of R410 A in short vertical tubes(8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300 mm to 600 mm at mass fluxes range of 58–246 kg m-2s-1 and saturation temperature of 38℃. Effects of mass flux, tube length on condensation heat transfer coefficient were investigated. The distribution of temperature, thickness of condensate film and local condensation heat transfer coefficient along the tube were also analyzed.. It is indicated that the entrance effect played an important role in condensation heat transfer of vertical tube, and the influence of entrance effect on average condensation heat transfer coefficients will weaken with the length of tube in the experimental condensation. The experimental results were compared with four well known correlations available in literatures, and the Chen correlation shows good agreement with the experimental data but with ±40% deviation. A new modified condensation heat transfer correlation with 12.7% mean deviation was developed to predict the condensation heat transfer coefficients in short vertical tube based on the experimental data.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFE0196000)IWHR Basic Scientific Research Projects(No.MK2018J09,No.MK2020J06).
文摘The turbulence kinetic energy and heat transfer performance of air in spirally fluted tube were numerically studied at a constant wall temperature with Reynolds number(Re)between 5000 and 45000.Furthermore,the flow dynamics and heat transfer performance of spirally fluted tubes with five different geometric parameters as well as the effects of separation vortex and swirling wake flow on heat transfer and flow resistance were analyzed.According to the results,heat transfer is enhanced mainly because the fluid hit the windward side of the flute,thus generating a strong turbulence kinetic energy to further reconstruct the boundary layer.The second reason is that the formation of the recirculation zone between the flutes disturbs the boundary layer caused by the flow separation.With the increase of flute depth ratio(L_(d)/D),the separation vortex will become stronger and larger on the leeward side of flute.The separation vortex will break the boundary layer and improve the heat transfer capacity which is accompanied with the increase of fluid resistance.As the flute pitch length ratio(L_(p)/D)decreases,the spiral flow is strengthened,and meanwhile more wake flow is generated.The spiral flow causes little impact on enhancing heat transfer but inhibits the development of the separation vortex and fluid pulsation;in addition,the fluid resistance is reduced at the same time.The maximum value of the average Nusselt number appears when Re=5000,L_(d)/D=0.25 and L_(p)/D=1.00,which is 2.53 times the value of smooth tube.In view of the whole range of Reynolds number,the thermal performance enhancement factor indicates that L_(d)/D=0.15 and L_(p)/D=1.00 are the optimal geometric design parameters.
基金This work was supported by the National Natural Science Foundation of China(No.11675128).
文摘In this paper,the condensation heat transfer characteristics of parallel flow and counter flow inside an inclined wave-finned flat tube is investigated experimentally.The condensation heat transfer coefficients are analyzed based on the experimental results.Results of experiments show that condensation heat transfer coefficient decreases as the temperature difference Δt=ts-tw increases and mass flow rate decreases.The parallel flow has a similar development with the counter flow,and the condensation heat transfer coefficient of counter flow is less than that of parallel flow under the same air cooling conditions.In addition,condensation heat transfer coefficient correlations are also obtained under experimental ranges.The calculations agree well with the measured data and the agreement is seen to be within ±4% for the parallel flow and ±5% for the counter flow.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59995550-3) .
文摘To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.