The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this stud...The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this study, the energy performance and condensation risk of the use of DCDV system were examined by analyzing its application in a typical office building in Hong Kong. Through hour-by-hour simulation using actual equipment performance data and realistic building and system characteristics, it was found that with the use of DCDV system, the annual energy consumption could be reduced by 54% in comparison with the conventional system(constant air volume with reheat system). In respect of condensation risk, it was found that the annual frequency of occurrence of condensation on DC coil was 35 h. Additional simulations were conducted to examine the influence of different parameters on the condensation risk of DCDV system. Measures to ensure condensate-free on DC coil were also discussed.展开更多
Due to the different approaches in determining the ventilation airflow rate per person for workspaces,where high-temperature air conditioning systems are used for air conditioning,problems with the condensation of wat...Due to the different approaches in determining the ventilation airflow rate per person for workspaces,where high-temperature air conditioning systems are used for air conditioning,problems with the condensation of water vapour on the cold surfaces of the system can occur.The article analyses the risk of condensation in various European cities using the available climatic data.Systems with cooling ceilings and cooling beams with a ventilation device operating in parallel are taken into account.Different ventilation airflow rates per person were analysed.On the example of a room equipped with high-temperature cooling,an energy simulation calculation is performed,which includes a ventilation and air-conditioning system with the possibility of capacity control.It is clear from the results that the condensation of water vapour can be prevented by technical measures at the cost of reducing the cooling capacity,which can affect the achievement of the thermal comfort of those present.In the end,suitable solutions are discussed,which should already be adopted at the time the device is designed so that the risk of condensation is not a major obstacle in the operation of these energy-efficient systems.An irreplaceable role in the operation of high-temperature cooling systems is played by a measurement and control system with a suitable algorithm to prevent condensation.展开更多
The Plum Rains Season(PRS)has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China.Even if the indoor heat source and moisture...The Plum Rains Season(PRS)has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China.Even if the indoor heat source and moisture production is constant,when the outdoor air temperature rises rapidly during high air humidity PRS,the build-ing envelope temperature heats up much more slower than the indoor air temperature and therefore the wall surface temperature is lower than the indoor air dewpoint which leads to condensation phenomenon,resulting in deterioration of insulation performance,mouldy walls,deterioration of indoor air quality.At present,there is a lack of research on the factors affecting condensation in rural residence during PRS.This paper evaluates the impact of occupants’habit of window opening modes and building construction parameters on the building envelope surface condensation in Changsha during PRS.Using Designer’Simulation Toolkit(DeST)simulated and analysed the impact of key parameters such as window-to-wall ratio,exterior wall reflectivity,window opening mode(open/close),and external wall insulation on the building indoor thermal and humid environment.The condensation risk X is proposed to evaluate the condensation possibility on the building envelope’s inner sur-face.The results show that from the perspective of anti-condensation:The rural residential building in Changsha should balance the window-wall ratio against better natural lighting;Keeping windows closed during PRS can effectively alleviate the condensation problem while the insulation in the external wall layer could aggravate the condensation.展开更多
基金Supported by Competitive Earmarked Research Grant of Hong Kong Government(CERG No.522709)
文摘The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this study, the energy performance and condensation risk of the use of DCDV system were examined by analyzing its application in a typical office building in Hong Kong. Through hour-by-hour simulation using actual equipment performance data and realistic building and system characteristics, it was found that with the use of DCDV system, the annual energy consumption could be reduced by 54% in comparison with the conventional system(constant air volume with reheat system). In respect of condensation risk, it was found that the annual frequency of occurrence of condensation on DC coil was 35 h. Additional simulations were conducted to examine the influence of different parameters on the condensation risk of DCDV system. Measures to ensure condensate-free on DC coil were also discussed.
文摘Due to the different approaches in determining the ventilation airflow rate per person for workspaces,where high-temperature air conditioning systems are used for air conditioning,problems with the condensation of water vapour on the cold surfaces of the system can occur.The article analyses the risk of condensation in various European cities using the available climatic data.Systems with cooling ceilings and cooling beams with a ventilation device operating in parallel are taken into account.Different ventilation airflow rates per person were analysed.On the example of a room equipped with high-temperature cooling,an energy simulation calculation is performed,which includes a ventilation and air-conditioning system with the possibility of capacity control.It is clear from the results that the condensation of water vapour can be prevented by technical measures at the cost of reducing the cooling capacity,which can affect the achievement of the thermal comfort of those present.In the end,suitable solutions are discussed,which should already be adopted at the time the device is designed so that the risk of condensation is not a major obstacle in the operation of these energy-efficient systems.An irreplaceable role in the operation of high-temperature cooling systems is played by a measurement and control system with a suitable algorithm to prevent condensation.
基金This work was supported by Scientific Research Fund of Hunan Provincial Education Department[19A001]Natural Science Founda-tion of Hunan Province[2019JJ40303]+2 种基金National Natural Science Foun-dation of China(51806021)State Key Laboratory of Air-conditioning Equipment and System Energy Conservation[ACSKL2018KT18]and Double-First class International Collaboration Fund of Changsha Uni-versity of Science and Technology[2018IC16].
文摘The Plum Rains Season(PRS)has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China.Even if the indoor heat source and moisture production is constant,when the outdoor air temperature rises rapidly during high air humidity PRS,the build-ing envelope temperature heats up much more slower than the indoor air temperature and therefore the wall surface temperature is lower than the indoor air dewpoint which leads to condensation phenomenon,resulting in deterioration of insulation performance,mouldy walls,deterioration of indoor air quality.At present,there is a lack of research on the factors affecting condensation in rural residence during PRS.This paper evaluates the impact of occupants’habit of window opening modes and building construction parameters on the building envelope surface condensation in Changsha during PRS.Using Designer’Simulation Toolkit(DeST)simulated and analysed the impact of key parameters such as window-to-wall ratio,exterior wall reflectivity,window opening mode(open/close),and external wall insulation on the building indoor thermal and humid environment.The condensation risk X is proposed to evaluate the condensation possibility on the building envelope’s inner sur-face.The results show that from the perspective of anti-condensation:The rural residential building in Changsha should balance the window-wall ratio against better natural lighting;Keeping windows closed during PRS can effectively alleviate the condensation problem while the insulation in the external wall layer could aggravate the condensation.