In this paper n-hexane is chosen as typical volatile in condensed mode polymerization process, and the adsorption equilibrium of volatile in polyethylene particles is studied through experiments at different temperatu...In this paper n-hexane is chosen as typical volatile in condensed mode polymerization process, and the adsorption equilibrium of volatile in polyethylene particles is studied through experiments at different temperatures, pressures and particle diameters. It is found that more adsorbed quantity of volatile at equilibrium can be obtained with lower temperature, higher pressure and smaller particle diameter. Under polymerization conditions, the adsorbed quantity at equilibrium is more strongly affected by temperature than by pressure, and if the diameter distribution of particles is very wide the effect of diameter on the adsorbed quantity must be taken into consideration. With theoretical analyses a model is proposed for calculating the adsorbed quantity of volatile at equilibrium.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderate...The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.展开更多
文摘In this paper n-hexane is chosen as typical volatile in condensed mode polymerization process, and the adsorption equilibrium of volatile in polyethylene particles is studied through experiments at different temperatures, pressures and particle diameters. It is found that more adsorbed quantity of volatile at equilibrium can be obtained with lower temperature, higher pressure and smaller particle diameter. Under polymerization conditions, the adsorbed quantity at equilibrium is more strongly affected by temperature than by pressure, and if the diameter distribution of particles is very wide the effect of diameter on the adsorbed quantity must be taken into consideration. With theoretical analyses a model is proposed for calculating the adsorbed quantity of volatile at equilibrium.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.