Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flo...Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.展开更多
Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different ...Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.展开更多
基金funded by the Inner Mongolia Autonomous Region Science and Technology Program(2021GG0198)Shaanxi Science,Technology Department(No.2021ZDLSF05-01,2022SF-327)China Geological Survey(DD20190351,DD20221751).
文摘Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.
基金supported by a grant from the National Natural Science Foundation of China (NSFC) No. 81070826/30872886/30400497Sponsored by Shanghai Rising-Star Program No. 09QA1403700+1 种基金funded by Shanghai Leading Academic Discipline Project (Project Number: S30206)the Science and Technology Commission of Shanghai (08DZ2271100)
文摘Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.