A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect main...A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.展开更多
The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis a...The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.展开更多
At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making f...At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.展开更多
The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in di...The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in different industries are surveyed; Second, many methods of condition monitoring are presented; Third, mathematical methods used in condition monitoring are given; Then the merits and shortcomings are discussed. Efficient maintenance policies are of fundamental importance in system engineering because of their fallbacks into the safety and economics of plant operation. Applying condition-based maintenance to a system can reduce the cost and extend the availability of facilities. With the advent of personal computers as fast and cost effective machines for data acquisition and processing of multiple signals some shortcomings mentioned in condition monitoring could be solved or reduced to some extent. These PCs can be a solution as a condition monitoring based maintenance system.展开更多
Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optim...Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.展开更多
Wise maintenance-procedures are essential for achieving high industrial productivities and low energy expenditure. A major part of the energy used in any production process is expended during the maintenance of the em...Wise maintenance-procedures are essential for achieving high industrial productivities and low energy expenditure. A major part of the energy used in any production process is expended during the maintenance of the employed equipment. To ensure plant reliability and equipment availability, a condition-based maintenance policy has been developed in this investigation. In particular, this project explored the use of vibration parameters in the diagnosis of equipment failure. A computer-based diagnostic tool employing an artificial neural-network (ANN) was developed to analyse the ensuing machinery faults, their causes and consequences. For various categories of this type of machinery, a vibration-severity chart (ISO 12372 / BS 4675: 1971) appropriately colour coded according to defined mechanical faults, was used in training of the ANN. The model was validated using data obtained from a centrifugal pump on full load and fed into the program written in Visual Basic. The results revealed that, for centrifugal pumps within 15 to 300kw power range, vibration-velocity amplitude of between 0.9 and 2.7mm/s was within acceptable limits. When the values rose to between 2.8 and 7.0mm/s, closer monitoring and improved understanding of the equipment condition was needed. The evolved diagnostic and prognostic model is applicable for other rotary equipment that is used within the same power limits.展开更多
Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlati...Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.展开更多
The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenan...The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenance. With the development of computer technology and sensors, on-line monitoring of high-voltage electric power equipment has developed rapidly. By introducing the main principle of Schering bridge to measure tanδ, the way of on-line monitoring of high-voltage electric power equipment was explained. Difference methods of on-line monitoring of insulation parameters for 35 kV substation were discussed. Finally, the shortcomings as well as its tendency of on-line monitoring were analyzed.展开更多
This paper aims to propose a modeling framework for subway operation and maintenance system (SOMS), which analyzes the train condition data based on both train sensor network data and basis train maintenance plan. The...This paper aims to propose a modeling framework for subway operation and maintenance system (SOMS), which analyzes the train condition data based on both train sensor network data and basis train maintenance plan. The system is formulated into five function modules, and the research problem is to determine one auxiliary maintains plan, including the time allocation and frequency of maintenance. The case of Guangzhou metro is conducted to illustrate the applicability of SOMS, and the results reveal a number of interesting insights into subway maintenance system, i.e., the worksheet can reduce duplication of redundant maintenance work, the repair cost, and the damage caused by frequent disassembly.展开更多
The present work adopted Reliability Centered Maintenance (RCM) methodology to evaluate marginal oilfield Early Production Facility (EPF) system to properly understand its functional failures and to develop an efficie...The present work adopted Reliability Centered Maintenance (RCM) methodology to evaluate marginal oilfield Early Production Facility (EPF) system to properly understand its functional failures and to develop an efficient maintenance strategy for the system. The outcome of the RCM conducted for a typical EPF within the Niger Delta zone of Nigeria provides an indication of equipment whose failure can significantly affect operations at the production facility. These include the steam generation unit and the wellhead choke assembly, using a risk-based failure Criticality Analysis. Failure Mode and Effect Analysis (FMEA) was conducted for the identified critical equipment on a component basis. Each component of the equipment was analyzed to identify the failure modes, causes and the effect of the failure. The outcome of the FMEA analysis aided the development of a robust maintenance management strategy, which is based on an optimized mix of corrective, preventive and condition-based monitoring maintenance for the marginal oilfield EPF.展开更多
In the optimal maintenance modeling, all possible maintenance activities and their corresponding probabilities play a key role in modeling. For a system with multiple non-identical units, its maintenance requirements ...In the optimal maintenance modeling, all possible maintenance activities and their corresponding probabilities play a key role in modeling. For a system with multiple non-identical units, its maintenance requirements are very complicated, and it is time-consuming, even omission may occur when enumerating them with various combinations of units and even with different maintenance actions for them. Deterioration state space partition (DSSP) method is an efficient approach to analyze all possible maintenance requirements at each maintenance decision point and deduce their corresponding probabilities for maintenance modeling of multi-unit systems. In this paper, an extended DSSP method is developed for systems with multiple non-identical units considering opportunistic, preventive and corrective maintenance activities for each unit. In this method, different maintenance types are distinguished in each maintenance requirement. A new representation of the possible maintenance requirements and their corresponding probabilities is derived according to the partition results based on the joint probability density function of the maintained system deterioration state. Furthermore, focusing on a two-unit system with a non-periodical inspected condition-based opportunistic preventive-maintenance strategy;a long-term average cost model is established using the proposed method to determine its optimal maintenance parameters jointly, in which “hard failure” and non-negligible maintenance time are considered. Numerical experiments indicate that the extended DSSP method is valid for opportunistic maintenance modeling of multi-unit systems.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
In order to optimize the spare parts inventory, we present a decision-making model under condition based maintenance policy for a single equipment system subjected to continuous and random deterioration. Firstly,a pro...In order to optimize the spare parts inventory, we present a decision-making model under condition based maintenance policy for a single equipment system subjected to continuous and random deterioration. Firstly,a probability model of the spare parts support is established, according to the requirement of a predetermined probability of stockout. It can determine the optimal spare parts stock level. Secondly, the spare parts ordering decision is made according to the equipment deterioration level, and it can optimize the spare parts ordering. The objectives of this model are to minimize the spare parts inventory, and the expected total operating cost. Thirdly,a numerical example is given to illustrate this model. The results prove that the optimal preventive maintenance threshold obtained from the proposed model can satisfy the spare parts support requirements.展开更多
With the continuous expansion of power distribution grid, the number of distribution equipments has become larger and larger. In order to make sure that all the equipments can operate reliably, a large amount of maint...With the continuous expansion of power distribution grid, the number of distribution equipments has become larger and larger. In order to make sure that all the equipments can operate reliably, a large amount of maintenance tasks should be conducted. Therefore, maintenance scheduling of distribution network is an important content, which has significant influence on reliability and economy of distribution network operation. This paper proposes a new model for maintenance scheduling which considers load loss, grid active power loss and system risk as objective functions. On this basis, Differential Evolution algorithm is adopted to optimize equipment maintenance time and load transfer path. Finally, the general distribution network of 33 nodes is taken for example which shows the maintenance scheduling model’s effectiveness and validity.展开更多
The advantages, disadvantages and characteristics of various maintenance strategies for modern mechanical equipment are analyzed. Combined with the system structure and functional characteristics of engineering equipm...The advantages, disadvantages and characteristics of various maintenance strategies for modern mechanical equipment are analyzed. Combined with the system structure and functional characteristics of engineering equipment,it puts forward the selection method of maintenance strategies for different types of equipment and failure modes. The view of this article is that the comprehensive maintenance strategy, which is based on condition based maintenance(CBM) and combines various maintenance strategies. This will become the main development direction of engineering equipment maintenance.展开更多
This thesis discusses the importance of equipment maintenance management, then introduces the development tendency of equipment maintenance management. In the end it analyses and studies the design of a computerized m...This thesis discusses the importance of equipment maintenance management, then introduces the development tendency of equipment maintenance management. In the end it analyses and studies the design of a computerized maintenance management system, which offers an integration technique.展开更多
This study investigates condition-based switching and replacement policies for a two-unit warm standby redundant system subject to non-instantaneous switchover. The system consists of two identical units: one is opera...This study investigates condition-based switching and replacement policies for a two-unit warm standby redundant system subject to non-instantaneous switchover. The system consists of two identical units: one is operating unit, while the other is standby unit. Two units are under continuous monitoring and degradation described by Gamma processes. Both switching and replacement policies are based on the degradation level of the operating unit. The switching and replacement thresholds are decision variables decided by minimizing the long-run expected cost rate. We first setup the mathematical optimization model and then analyze the global optimal solution of replacement threshold, as well as the existence and uniqueness condition for the local optimal solution of switching threshold(STH). Finally, we find that the optimal replacement threshold is ‘‘the bigger the better'', but the optimal STH depends on some optimal conditions which can be easily computed. Numerical examples are provided to verify the policies, and the effects of noninstantaneous switchover and cost ratio on optimal STHs are numerically discussed.展开更多
基金supported by the National watural Science Foundation of China (60904002)
文摘A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.
基金performed within the project ARCWIND-adaptation and implementation of floating wind energy conversion technology for the Atlantic region-which is co-financed by the European Regional Development Fund through the Interreg Atlantic Area Program under contract EAPA 344/2016
文摘The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.
文摘At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, StateEducation Ministry.
文摘The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in different industries are surveyed; Second, many methods of condition monitoring are presented; Third, mathematical methods used in condition monitoring are given; Then the merits and shortcomings are discussed. Efficient maintenance policies are of fundamental importance in system engineering because of their fallbacks into the safety and economics of plant operation. Applying condition-based maintenance to a system can reduce the cost and extend the availability of facilities. With the advent of personal computers as fast and cost effective machines for data acquisition and processing of multiple signals some shortcomings mentioned in condition monitoring could be solved or reduced to some extent. These PCs can be a solution as a condition monitoring based maintenance system.
基金supported by the National Natural Science Foundation of China(51705221)the China Scholarship Council(201606830028)+1 种基金the Fundamental Research Funds for the Central Universities(NS2015072)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0313)
文摘Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.
文摘Wise maintenance-procedures are essential for achieving high industrial productivities and low energy expenditure. A major part of the energy used in any production process is expended during the maintenance of the employed equipment. To ensure plant reliability and equipment availability, a condition-based maintenance policy has been developed in this investigation. In particular, this project explored the use of vibration parameters in the diagnosis of equipment failure. A computer-based diagnostic tool employing an artificial neural-network (ANN) was developed to analyse the ensuing machinery faults, their causes and consequences. For various categories of this type of machinery, a vibration-severity chart (ISO 12372 / BS 4675: 1971) appropriately colour coded according to defined mechanical faults, was used in training of the ANN. The model was validated using data obtained from a centrifugal pump on full load and fed into the program written in Visual Basic. The results revealed that, for centrifugal pumps within 15 to 300kw power range, vibration-velocity amplitude of between 0.9 and 2.7mm/s was within acceptable limits. When the values rose to between 2.8 and 7.0mm/s, closer monitoring and improved understanding of the equipment condition was needed. The evolved diagnostic and prognostic model is applicable for other rotary equipment that is used within the same power limits.
文摘Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.
文摘The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenance. With the development of computer technology and sensors, on-line monitoring of high-voltage electric power equipment has developed rapidly. By introducing the main principle of Schering bridge to measure tanδ, the way of on-line monitoring of high-voltage electric power equipment was explained. Difference methods of on-line monitoring of insulation parameters for 35 kV substation were discussed. Finally, the shortcomings as well as its tendency of on-line monitoring were analyzed.
文摘This paper aims to propose a modeling framework for subway operation and maintenance system (SOMS), which analyzes the train condition data based on both train sensor network data and basis train maintenance plan. The system is formulated into five function modules, and the research problem is to determine one auxiliary maintains plan, including the time allocation and frequency of maintenance. The case of Guangzhou metro is conducted to illustrate the applicability of SOMS, and the results reveal a number of interesting insights into subway maintenance system, i.e., the worksheet can reduce duplication of redundant maintenance work, the repair cost, and the damage caused by frequent disassembly.
文摘The present work adopted Reliability Centered Maintenance (RCM) methodology to evaluate marginal oilfield Early Production Facility (EPF) system to properly understand its functional failures and to develop an efficient maintenance strategy for the system. The outcome of the RCM conducted for a typical EPF within the Niger Delta zone of Nigeria provides an indication of equipment whose failure can significantly affect operations at the production facility. These include the steam generation unit and the wellhead choke assembly, using a risk-based failure Criticality Analysis. Failure Mode and Effect Analysis (FMEA) was conducted for the identified critical equipment on a component basis. Each component of the equipment was analyzed to identify the failure modes, causes and the effect of the failure. The outcome of the FMEA analysis aided the development of a robust maintenance management strategy, which is based on an optimized mix of corrective, preventive and condition-based monitoring maintenance for the marginal oilfield EPF.
文摘In the optimal maintenance modeling, all possible maintenance activities and their corresponding probabilities play a key role in modeling. For a system with multiple non-identical units, its maintenance requirements are very complicated, and it is time-consuming, even omission may occur when enumerating them with various combinations of units and even with different maintenance actions for them. Deterioration state space partition (DSSP) method is an efficient approach to analyze all possible maintenance requirements at each maintenance decision point and deduce their corresponding probabilities for maintenance modeling of multi-unit systems. In this paper, an extended DSSP method is developed for systems with multiple non-identical units considering opportunistic, preventive and corrective maintenance activities for each unit. In this method, different maintenance types are distinguished in each maintenance requirement. A new representation of the possible maintenance requirements and their corresponding probabilities is derived according to the partition results based on the joint probability density function of the maintained system deterioration state. Furthermore, focusing on a two-unit system with a non-periodical inspected condition-based opportunistic preventive-maintenance strategy;a long-term average cost model is established using the proposed method to determine its optimal maintenance parameters jointly, in which “hard failure” and non-negligible maintenance time are considered. Numerical experiments indicate that the extended DSSP method is valid for opportunistic maintenance modeling of multi-unit systems.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
文摘In order to optimize the spare parts inventory, we present a decision-making model under condition based maintenance policy for a single equipment system subjected to continuous and random deterioration. Firstly,a probability model of the spare parts support is established, according to the requirement of a predetermined probability of stockout. It can determine the optimal spare parts stock level. Secondly, the spare parts ordering decision is made according to the equipment deterioration level, and it can optimize the spare parts ordering. The objectives of this model are to minimize the spare parts inventory, and the expected total operating cost. Thirdly,a numerical example is given to illustrate this model. The results prove that the optimal preventive maintenance threshold obtained from the proposed model can satisfy the spare parts support requirements.
文摘With the continuous expansion of power distribution grid, the number of distribution equipments has become larger and larger. In order to make sure that all the equipments can operate reliably, a large amount of maintenance tasks should be conducted. Therefore, maintenance scheduling of distribution network is an important content, which has significant influence on reliability and economy of distribution network operation. This paper proposes a new model for maintenance scheduling which considers load loss, grid active power loss and system risk as objective functions. On this basis, Differential Evolution algorithm is adopted to optimize equipment maintenance time and load transfer path. Finally, the general distribution network of 33 nodes is taken for example which shows the maintenance scheduling model’s effectiveness and validity.
文摘The advantages, disadvantages and characteristics of various maintenance strategies for modern mechanical equipment are analyzed. Combined with the system structure and functional characteristics of engineering equipment,it puts forward the selection method of maintenance strategies for different types of equipment and failure modes. The view of this article is that the comprehensive maintenance strategy, which is based on condition based maintenance(CBM) and combines various maintenance strategies. This will become the main development direction of engineering equipment maintenance.
文摘This thesis discusses the importance of equipment maintenance management, then introduces the development tendency of equipment maintenance management. In the end it analyses and studies the design of a computerized maintenance management system, which offers an integration technique.
基金supported by the National Natural Science Foundation of China(61210012,61021063,61290324)the National Science and Technology Major Project(2011ZX02504-008)
文摘This study investigates condition-based switching and replacement policies for a two-unit warm standby redundant system subject to non-instantaneous switchover. The system consists of two identical units: one is operating unit, while the other is standby unit. Two units are under continuous monitoring and degradation described by Gamma processes. Both switching and replacement policies are based on the degradation level of the operating unit. The switching and replacement thresholds are decision variables decided by minimizing the long-run expected cost rate. We first setup the mathematical optimization model and then analyze the global optimal solution of replacement threshold, as well as the existence and uniqueness condition for the local optimal solution of switching threshold(STH). Finally, we find that the optimal replacement threshold is ‘‘the bigger the better'', but the optimal STH depends on some optimal conditions which can be easily computed. Numerical examples are provided to verify the policies, and the effects of noninstantaneous switchover and cost ratio on optimal STHs are numerically discussed.