期刊文献+
共找到875篇文章
< 1 2 44 >
每页显示 20 50 100
Condition Monitoring and Fault Diagnosis Based on Rough Set Theory 被引量:1
1
作者 Li Xiong Li Shengli Xu Zongchang 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期781-783,共3页
In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm bas... In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis. 展开更多
关键词 condition monitoring fault diagnosis ROUGH SET theory ENGINE
下载PDF
STUDY ON REALISTIC TECHNOLOGY OF CONDITION MONITORING AND FAULT DIAGNOSTIC SYSTEM FOR SHIPPING POWER DEVICES
2
作者 温熙森 李岳 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第3期26-32,共7页
STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue... STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue;TangBingyang(Dep... 展开更多
关键词 状态监测 故障诊断 轮船 动力装置
下载PDF
An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines
3
作者 LIU Hai-rong XU Fei-yun 《International Journal of Plant Engineering and Management》 2006年第4期193-204,共12页
An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet orient... An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration, etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system. 展开更多
关键词 embedded system mobile agent condition monitoring fault diagnosis
下载PDF
Dynamic Vision-Based Machinery Fault Diagnosis With Cross-Modality Feature Alignment
4
作者 Xiang Li Shupeng Yu +2 位作者 Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2068-2081,共14页
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In... Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis. 展开更多
关键词 condition monitoring domain generalization eventbased camera fault diagnosis machine vision
下载PDF
Research on Key Techniques of Condition Monitoring and Fault Diagnosing Systems of Machine Groups
5
作者 WANGYan-kai LIAOMing-fu WANGSi-ji 《International Journal of Plant Engineering and Management》 2005年第2期65-69,共5页
This paper describes the development of the condition monitoring and faultdiagnosing system of a group of rotating machinery. The data management is performed by means ofdouble redundant data bases stored simultaneous... This paper describes the development of the condition monitoring and faultdiagnosing system of a group of rotating machinery. The data management is performed by means ofdouble redundant data bases stored simultaneously in both the analyzing server and monitoringclient. In this way, high reliability of the storage of data is guaranteed. Condensation of trenddata releases much space resource of the hard disk. Diagnosing strategies orientated to differenttypical faults of rotating machinery are developed and incorporated into the system. Experimentalverification shows that the system is suitable and effective for condition monitoring and faultdiagnosing for a rotating machine group. 展开更多
关键词 machine group condition monitoring fault diagnosis analyzing server monitoring client
下载PDF
Decentralized and overall condition monitoring system for large-scale mobile and complex equipment
6
作者 Cao Jianjun Zhang Peilin +1 位作者 Ren Guoquan Fu Jianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期758-763,共6页
It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quit... It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested. 展开更多
关键词 condition monitoring fault diagnosis micro control unit information fusion
下载PDF
Fault Detection and Isolation in Industrial Systems Based on Spectral Analysis Diagnosis
7
作者 Ahmed Hafaifa Mouloud Guemana Attia Daoudi 《Intelligent Control and Automation》 2013年第1期36-41,共6页
The diagnoses in industrial systems represent an important economic objective in process industrial automation area. To guarantee the safety and the continuity in production exploitation and to record the useful event... The diagnoses in industrial systems represent an important economic objective in process industrial automation area. To guarantee the safety and the continuity in production exploitation and to record the useful events with the feedback experience for the curative maintenance. We propose in this work to examine and illustrate the application ability of the spectral analysis approach, in the area of fault detection and isolation industrial systems. In this work, we use a combined analysis diagram of time-frequency, in order to make this approach exploitable in the proposed supervision strategy with decision making module. The obtained results, show clearly how to guarantee a reliable and sure exploitation in industrial system, thus allowing better performances at the time of its exploitation on the supervision strategy. 展开更多
关键词 diagnosis SPECTRAL Analyzes faultS Detection and ISOLATION condition monitoring
下载PDF
A Web-based Condition Monitoring and Diagnostic System of Rolling Mill
8
作者 XIONG Liang cai, HE Lin song, SHI Tie lin, YANG Shu zi Huazhong University of Science and Technology, Wuhan 430074, P.R.China 《International Journal of Plant Engineering and Management》 2002年第1期21-25,共5页
A web based condition monitoring and fault diagnosis system (CMAFDS) for the F2 finishing mill of the 2050 Hot Strip Mill was developed at a steel works. The features of the condition monitoring and fault diagnosis s... A web based condition monitoring and fault diagnosis system (CMAFDS) for the F2 finishing mill of the 2050 Hot Strip Mill was developed at a steel works. The features of the condition monitoring and fault diagnosis system based on the Web are analyzed in this paper. This paper also describes the main frame of the hardware and the software in the system and emphatically points out the function of the database management system(DBMS) based on the Web. It is proved that the web based CMAFDS is practical in technology and much superior to the CMAFDS based on other network technology in functions. 展开更多
关键词 condition monitoring fault diagnosis WEB rolling mill database.
下载PDF
A Study on a Remote Monitoring and Diagnosis System and Its Application
9
作者 GAO Qiang HE Zheng-jia 《International Journal of Plant Engineering and Management》 2005年第3期136-141,共6页
Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitorin... Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described. 展开更多
关键词 remote monitoring and diagnosis equipment maintenance fault diagnosis condition monitoring
下载PDF
Fault Diagnosis of Mechanical Equipments Through Spectrometric oil Analysis for Worn Off Metallic Elements
10
作者 王文清 万耀青 +1 位作者 马璐 万晓东 《Journal of Beijing Institute of Technology》 EI CAS 1994年第2期183-192,共10页
In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose th... In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose the impending failure and to predict the fault modes and locate the fault spots, a comprehensive approach is studied and outlined on the basis of methods of discriminative analysis and fuzzy logic. A fault diagnosis expert system OAFDS developed by the authors for the nonitoring of working conditions of the ND5 locomotive diesel engine Nd5 is briefly introduced. 展开更多
关键词 expert systems fault diagnosis wears lubrication/condition monitoring
下载PDF
A Novel Method Based on UNET for Bearing Fault Diagnosis 被引量:3
11
作者 Dileep Kumar Soother Imtiaz Hussain Kalwar +3 位作者 Tanweer Hussain Bhawani Shankar Chowdhry Sanaullah Mehran Ujjan Tayab Din Memon 《Computers, Materials & Continua》 SCIE EI 2021年第10期393-408,共16页
Reliability of rotating machines is highly dependent on the smooth rolling of bearings.Thus,it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable ... Reliability of rotating machines is highly dependent on the smooth rolling of bearings.Thus,it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable fault diagnosis and condition monitoring approach.In the recent past,Deep Learning(DL)has become applicable in condition monitoring of rotating machines owing to its performance.This paper proposes a novel bearing fault diagnosis method based on the processing and analysis of the vibration images.The proposed method is the UNET model that is a recent development in DL models.The model is applied to the 2D vibration images obtained by transforming normalized amplitudes of the time-series vibration data samples into the corresponding vibration images.The UNET model performs pixel-level feature learning using the vibration images owing to its unique architecture.The results demonstrate that the model can perform dense predictions without any loss of label information,generally caused by the sliding window labelling method.The comparative analysis with other DL models confirmed the superiority of the UNET model which has achieved maximum accuracy of 98.91%and F1-Score of 99%. 展开更多
关键词 condition monitoring deep learning fault diagnosis rotating machines VIBRATION
下载PDF
Online Condition Monitoring of Gripper Cylinder in TBM Based on EMD Method 被引量:2
12
作者 Lin Li Jian-Feng Tao +2 位作者 Hai-Dong Yu Yi-Xiang Huang Cheng-Liang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1325-1337,共13页
The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for... The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for the safety and efficiency of the whole tunneling project. In this paper, an online condition monitoring system based on the Empirical Mode Decomposition (EMD) method is estab- lished for fault diagnosis of the gripper cylinder while TBM is working. Firstly, the lumped mass parameter model of the gripper cylinder is established considering the influence of the variable stiffness at the rock interface, the equivalent stiffness of the oil, the seals, and the copper guide sleeve. The dynamic performance of the gripper cylinder is investigated to provide basis for its health condition evaluation. Then, the EMD method is applied to identify the characteristic frequencies of the gripper cylinder for fault diagnosis and a field test is used to verify the accuracy of the EMD method for detection of the characteristic frequencies. Furthermore, the contact stiff- ness at the interface between the barrel and the rod is calculated with Hertz theory and the relationship between the natural frequency and the stiffness varying with the health condition of the cylinder is simulated based on the dynamic model. The simulation shows that the character- istic frequencies decrease with the increasing clearance between the barrel and the rod, thus the defects could be indicated by monitoring the natural frequency. Finally, a health condition management system of the gripper cylin- der based on the vibration signal and the EMD method is established, which could ensure the safety of TBM. 展开更多
关键词 fault diagnosis - Empirical modedecomposition (EMD) condition monitoring - Grippercylinder TBM
下载PDF
Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors 被引量:1
13
作者 Majid Hussain Tayab Din Memon +2 位作者 Imtiaz Hussain Zubair Ahmed Memon Dileep Kumar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第11期435-470,共36页
Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely repo... Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely reported as a condition monitoring technique in the detection and identification of individual andmultiple Induction Motor(IM)faults.However,checking the fault detection and classification with deep learning models and its comparison among them selves or conventional approaches is rarely reported in the literature.Therefore,in this work,wepresent the detection and identification of induction motor faults with MCSA and three Deep Learning(DL)models namely MLP,LSTM,and 1D-CNN.Initially,we have developed the model of Squirrel Cage induction motor in MATLAB and simulated it for single phasing and stator winding faults(SWF)using Fast Fourier Transform(FFT),Short Time Fourier Transform(STFT),and Continuous Wavelet Transform(CWT)to detect and identify the healthy and unhealthy conditions with phase to ground,single phasing and in multiple fault conditions using Motor Current Signature Analysis.The faults impact on stator current is presented in the time and frequency domain(i.e.,power spectrum).The simulation results show that the scalogram has shown good results in time-frequency analysis for fault and showing its impact on the energy of current during individual fault and multiple fault conditions.This is further investigated with three deep learning models(i.e.,MLP,LSTM,and 1D-CNN)for checking the fault detection and identification(i.e.,classification)improvement in a three-phase induction motor.By simulating the three-phase induction motor in various healthy and unhealthy conditions in MATLAB,we have collected current signature data in the time domain,labeled them accordingly and created the 50 thousand samples dataset for DL models.All the DL models are trained and validated with a suitable number of architecture layers.By simulation,the multiclass confusion matrix,precision,recall,and F1-score are obtained in several conditions.The result shows that the stator current signature of the motor can be used to detect individual and multiple faults.Moreover,deep learning models can efficiently classify the induction motor faults based on time-domain data of the stator current signature.In deep learning(DL)models,the LSTM has shown better accuracy among all other three models.These results show that employing deep learning in fault detection and identification of induction motors can be very useful in predictive maintenance to avoid shutdown and production cycle stoppage in the industry. 展开更多
关键词 condition monitoring motor fault diagnosis stator winding faults deep learning signal processing
下载PDF
Monitoring and Detection of Wind Turbine Vibration with KNN-Algorithm 被引量:1
14
作者 Javier Vives 《Journal of Computer and Communications》 2022年第7期1-12,共12页
Maintenance for wind turbines has been transformed using supervised machine learning techniques. This method of automatic and autonomous learning can identify, monitor, and detect electrical and mechanical components ... Maintenance for wind turbines has been transformed using supervised machine learning techniques. This method of automatic and autonomous learning can identify, monitor, and detect electrical and mechanical components of wind turbines and predict, detect, and anticipate their degeneration. Using a machine learning classifier and frequency analysis, we simulate two failure states caused by bearing vibrations. Implementing KNN facilitates efficient monitoring, monitoring, and fault-finding for wind turbines. It is possible to reduce downtime, anticipate breakdowns, and import offshore aspects through these technologies. 展开更多
关键词 Wind Turbines Vibrations fault diagnosis Machine Learning condition monitoring Internet of Things
下载PDF
Warehouse Environment Parameter Monitoring System and Sensor Error Correction Model Based on PSO-BP 被引量:5
15
作者 Lin Sen Wang Guanglong +3 位作者 Chen Yingjie Wang Le Qiao Zhongtao Gao Fengqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期333-340,共8页
The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)w... The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)with back propagation(BP)neural network algorithm is established to reduce nonlinear characteristics and improve test accuracy of the system.Simulation and experiments indicate that the PSO-BP neural network algorithm has advantages of fast convergence rate and high diagnostic accuracy.The monitoring system can provide higher measurement precision,lower power consume,stable network data communication and fault diagnoses function.The system has been applied to monitoring environment parameter of warehouse,special vehicles and ships,etc. 展开更多
关键词 Warehouse warehouse correction networking swarm terminals hidden acceleration normalized intelligent
下载PDF
A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals
16
作者 A.Joshuva V.Sugumaran 《Structural Durability & Health Monitoring》 EI 2017年第1期63-79,共17页
Renewable energy sources are considered much in energy fields because of thecontemporary energy calamities. Among the important alternatives being considered, windenergy is a durable competitor because of its dependab... Renewable energy sources are considered much in energy fields because of thecontemporary energy calamities. Among the important alternatives being considered, windenergy is a durable competitor because of its dependability due to the development of theinnovations, comparative cost effectiveness and great framework. To yield wind energymore proficiently, the structure of wind turbines has turned out to be substantially bigger,creating conservation and renovation works troublesome. Due to various ecologicalconditions, wind turbine blades are subjected to vibration and it leads to failure. If thefailure is not diagnosed early, it will lead to catastrophic damage to the framework. In orderto increase safety observations, to reduce down time, to bring down the recurrence ofunexpected breakdowns and related enormous maintenance, logistic expenditures and tocontribute steady power generation, the wind turbine blade must be monitored now andthen to assure that they are in good condition. In this paper, a three bladed wind turbinewas preferred and using vibration source, the condition of a wind turbine blade is examined.The faults like blade crack, erosion, hub-blade loose connection, pitch angle twist and bladebend faults were considered and these faults are classified using Bayes Net (BN),Discriminative Multinomial Naïve Bayes (DMNB), Naïve Bayes (NB), Simple NaïveBayes (SNB), and Updateable Naïve Bayes (UNB) classifiers. These classifiers arecompared and better classifier is suggested for condition monitoring of wind turbine blades. 展开更多
关键词 condition monitoring fault diagnosis wind turbine blade machine learning statistical features vibration signals
下载PDF
Single Point Cutting Tool Fault Diagnosis in Turning Operation Using Reduced Error Pruning Tree Classifier
17
作者 E.Akshay V.Sugumaran M.Elangovan 《Structural Durability & Health Monitoring》 EI 2022年第3期255-270,共16页
Tool wear is inevitable in daily machining process since metal cutting process involves the chip rubbing the tool surface after it has been cut by the tool edge.Tool wear dominantly influences the deterioration of sur... Tool wear is inevitable in daily machining process since metal cutting process involves the chip rubbing the tool surface after it has been cut by the tool edge.Tool wear dominantly influences the deterioration of surface finish,geometric and dimensional tolerances of the workpiece.Moreover,for complete utilization of cutting tools and reduction of machine downtime during the machining process,it becomes necessary to understand the develop-ment of tool wear and predict its status before happening.In this study,tool condition monitoring system was used to monitor the behavior of a single point cutting tool to predict flank wear.A uniaxial accelerometer was attached to a single point cutting tool under study.The accelerometer acquires vibrational signals during turning operation on a lathe machine.The acquired signals were then used to extract statistical features such as standard error,variance,skewness,etc.The substantial features were recognized to reduce the utilization of computing resources.They were used to classify the signals as good and three different measures of flank wear by a decision tree algorithm.Frequency domain features were also extracted and shown to be less effective in classification in comparison to statistical features.REPTree(Reduced Error Pruning Tree)algorithm was used in this study.REPTree decision tree algorithm achieved a maximum classification accuracy of 72.77%for all signals combined.When spindle speed and feed rate are considered as the variables the accuracy is about 86.25%.When spindle speed is the only variable parameter the accuracy is about 82.71%.When depth of cut,feed rate and speed of the spindle are considered as variable parameters,the accuracy of the decision tree is around 93.51%.This study demonstrates the performance of REPTree classifier in tool condition monitoring.It can be utilized for tool wear identification and thus improve surface finish,dimensional accuracy of the work piece and reduce machine down-time.Any additional research on the work may involve analysis of different classifier algorithms which could potentially predict tool wear with greater accuracy. 展开更多
关键词 fault diagnosis tool condition monitoring REPTree decision tree statistical feature extraction
下载PDF
Comparative Study on Tree Classifiers for Application to Condition Monitoring ofWind Turbine Blade through Histogram Features Using Vibration Signals: A Data-Mining Approach
18
作者 A.Joshuva V.Sugumaran 《Structural Durability & Health Monitoring》 EI 2019年第4期399-416,共18页
Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical e... Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical energy.Wind turbine blades,in particular,require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost.The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features.In this study,blade bend,hub-blade loose connection,blade erosion,pitch angle twist,and blade cracks were simulated on the blade.This problem is formulated as a machine learning problem which consists of three phases,namely feature extraction,feature selection and feature classification.Histogram features are extracted from vibration signals and feature selection was carried out using the J48 decision tree algorithm.Feature classification was performed using 15 tree classifiers.The results of the machine learning classifiers were compared with respect to their accuracy percentage and a better model is suggested for real-time monitoring of a wind turbine blade. 展开更多
关键词 condition monitoring fault diagnosis wind turbine blade machine learning histogram features tree classifiers
下载PDF
SVM-Algorithm for Supervision, Monitoring and Detection Vibration in Wind Turbines
19
作者 Javier Vives Juan Palací Janverly Heart 《Journal of Computer and Communications》 2022年第11期44-55,共12页
With the implementation of supervised machine learning techniques, wind turbine maintenance has been transformed. A wind turbine’s electrical and mechanical components can be automatically identified, monitored, and ... With the implementation of supervised machine learning techniques, wind turbine maintenance has been transformed. A wind turbine’s electrical and mechanical components can be automatically identified, monitored, and detected to predict, detect, and anticipate their degeneration using this method of automatic and autonomous learning. Two different failure states are simulated due to bearing vibrations and compared with machine learning classifier and frequency analysis. A wind turbine can be monitored, monitored, and faulted efficiently by implementing SVM. With these technologies, downtime can be reduced, breakdowns can be anticipated, and aspects can be imported if they are offshore. 展开更多
关键词 Vibrations Wind Turbines fault diagnosis Machine Learning condition monitoring Deep Learning
下载PDF
Implementation of Wavelet Packet Transform for Detection and Analysis of Stator Faults in Induction Machine
20
作者 G. Rayappan V. Duraisamy +1 位作者 D. Somasundareswari I. Rajarajeswari 《Circuits and Systems》 2016年第10期3253-3259,共7页
Execution of an online detection technique for induction motor fault diagnosis and research at the current period of time is discussed in this paper. Wavelet packets transform (WPT)-based algorithm is used by the dete... Execution of an online detection technique for induction motor fault diagnosis and research at the current period of time is discussed in this paper. Wavelet packets transform (WPT)-based algorithm is used by the detection method for investigating and identification of many disruptions that happen in three-phase induction motors. The association of the coefficients of the WPT of line currents with the help of a main wavelet at the secondary level of resolution with a threshold discovered through an experiment at the time of the vital position can used to observe the motor reference point. The propagation of wavelet analysis and disintegration of the signal into an equivalent bandwidth which can attain a good disintegration of the solution than what wavelet analysis do is called as Wavelet packet analysis. In order to overcome accidental failing, the on-line fault diagnostics technology for the reduction of incipient errors is a must. 展开更多
关键词 condition monitoring fault diagnosis Induction Motor Wavelet Packet Transform (WPT)
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部