From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t...From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.展开更多
The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical...The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical problems and complex control problems. In this work, the authors try to generate matrices such that: (1) the condition number of these types of matrices is controlled and (2) The algorithm used to generate these matrices preserves their structure.展开更多
We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
In this paper,for the regularized Hermitian and skew-Hermitian splitting(RHSS)preconditioner introduced by Bai and Benzi(BIT Numer Math 57:287–311,2017)for the solution of saddle-point linear systems,we analyze the s...In this paper,for the regularized Hermitian and skew-Hermitian splitting(RHSS)preconditioner introduced by Bai and Benzi(BIT Numer Math 57:287–311,2017)for the solution of saddle-point linear systems,we analyze the spectral properties of the preconditioned matrix when the regularization matrix is a special Hermitian positive semidefinite matrix which depends on certain parameters.We accurately describe the numbers of eigenvalues clustered at(0,0)and(2,0),if the iteration parameter is close to 0.An estimate about the condition number of the corresponding eigenvector matrix,which partly determines the convergence rate of the RHSS-preconditioned Krylov subspace method,is also studied in this work.展开更多
In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theo...In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.展开更多
The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled...The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.展开更多
Several important properties of a kind of random symplectic matrix used by A. Bunse-Gerstner and V. Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by ort...Several important properties of a kind of random symplectic matrix used by A. Bunse-Gerstner and V. Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by orthogonal similar transformation; 2) Its condition number is a constant; 3) The condition number of it is about 2.618.展开更多
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e....Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.展开更多
In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expr...In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expression of the minimum norm solution of MSTLS problem with multiple right-hand sides. Then, we present the Kronecker-product-based formulae for the normwise, mixed and componentwise condition numbers of the MSTLS problem. For easy estimation, we also exhibit Kronecker-product-free upper bounds for these condition numbers. All these results can reduce to those of the total least squares (TLS) problem which were given by Zheng <em>et al</em>. Finally, two numerical experiments are performed to illustrate our results.展开更多
A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the forc...A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.展开更多
The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and...The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.展开更多
It is known in the computational electromagnetics (CEM) that the node element has a relative wellconditioned matrix, but suffers from the spurious solution problem; whereas the edge element has no spurious solutions...It is known in the computational electromagnetics (CEM) that the node element has a relative wellconditioned matrix, but suffers from the spurious solution problem; whereas the edge element has no spurious solutions, but usually produces an ill-conditioned matrix. Particularly, when the mesh is over dense, the iterative solution of the matrix equation from edge element converges very slowly. Based on the node element and edge element, a node-edge element is presented, which has no spurious solutions and better-conditioned matrix. Numerical experiments demonstrate that the proposed node-edge element is more efficient than now-widely used edge element.展开更多
Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on sp...Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.展开更多
Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion ...Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion preconditioner.s for the solution of linear systems via the preconditioned conjugate gradient method. For the constant-coefficient second-order hyperbolic equaions with initial and Dirichlet boundary conditions,we prove that the conditionnumber of the preconditioned interface system is bounded by 2+x2 2+0.46x2 where x is the quo-tient between the lime and space steps. Such condition number produces a convergence rale that is independent of gridsize and aspect ratios. The results could be extended to parabolic equations.展开更多
In this paper, the unitarily invariant norm \\.\\ on C-mxn is used. We first discuss the problem under what case, a rectangular matrix A has minimum condition number K(A) = \\A\\ \\A(+)\\, where A(+) designates the Mo...In this paper, the unitarily invariant norm \\.\\ on C-mxn is used. We first discuss the problem under what case, a rectangular matrix A has minimum condition number K(A) = \\A\\ \\A(+)\\, where A(+) designates the Moore-Penrose inverse of A; and under what condition, a square matrix A has minimum condition number for its eigenproblem? Then we consider the second problem, i.e., optimum of K(A) = \\A\\ \\A(-1)\\(2) in error estimation.展开更多
文摘From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
文摘The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical problems and complex control problems. In this work, the authors try to generate matrices such that: (1) the condition number of these types of matrices is controlled and (2) The algorithm used to generate these matrices preserves their structure.
基金the NSF of China under grant 10471027 and Shanghai Education Commission.
文摘We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
基金The work is partially supported by the National Natural Science Foundation of China (No. 11801362).
文摘In this paper,for the regularized Hermitian and skew-Hermitian splitting(RHSS)preconditioner introduced by Bai and Benzi(BIT Numer Math 57:287–311,2017)for the solution of saddle-point linear systems,we analyze the spectral properties of the preconditioned matrix when the regularization matrix is a special Hermitian positive semidefinite matrix which depends on certain parameters.We accurately describe the numbers of eigenvalues clustered at(0,0)and(2,0),if the iteration parameter is close to 0.An estimate about the condition number of the corresponding eigenvector matrix,which partly determines the convergence rate of the RHSS-preconditioned Krylov subspace method,is also studied in this work.
基金Specialized Research Fund for the Doctoral Programof Higher Education (No20050213008)the Scientific and TechnicalPlan Item of Communications Department of Heilongjiang Province ofChina (2004)
文摘In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.
基金supported by Aeronautical Science Foundation of China(Grant No.20081651025)
文摘The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.
文摘Several important properties of a kind of random symplectic matrix used by A. Bunse-Gerstner and V. Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by orthogonal similar transformation; 2) Its condition number is a constant; 3) The condition number of it is about 2.618.
文摘Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.
文摘In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expression of the minimum norm solution of MSTLS problem with multiple right-hand sides. Then, we present the Kronecker-product-based formulae for the normwise, mixed and componentwise condition numbers of the MSTLS problem. For easy estimation, we also exhibit Kronecker-product-free upper bounds for these condition numbers. All these results can reduce to those of the total least squares (TLS) problem which were given by Zheng <em>et al</em>. Finally, two numerical experiments are performed to illustrate our results.
基金supported by the Open Foundation of Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics (No.kfjj20170512)the National Natural Science Foundation of China(No. 51175263)
文摘A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20120143110001)the General Education Program Requirements in the Humanities and Social Sciences of China(11YJC630155)the Youth Foundation of Hubei Province of China(Q20121203)
文摘The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.
文摘It is known in the computational electromagnetics (CEM) that the node element has a relative wellconditioned matrix, but suffers from the spurious solution problem; whereas the edge element has no spurious solutions, but usually produces an ill-conditioned matrix. Particularly, when the mesh is over dense, the iterative solution of the matrix equation from edge element converges very slowly. Based on the node element and edge element, a node-edge element is presented, which has no spurious solutions and better-conditioned matrix. Numerical experiments demonstrate that the proposed node-edge element is more efficient than now-widely used edge element.
基金supported partly by the National Natural Science Foundation of China(60872022)the"973"Program of China(2008CB317109),the Science Foundation of Guangxi Province of China(0991241)the Foundation of Guangxi Key Laboratory of Information and Communication(10903).
文摘Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.
文摘Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion preconditioner.s for the solution of linear systems via the preconditioned conjugate gradient method. For the constant-coefficient second-order hyperbolic equaions with initial and Dirichlet boundary conditions,we prove that the conditionnumber of the preconditioned interface system is bounded by 2+x2 2+0.46x2 where x is the quo-tient between the lime and space steps. Such condition number produces a convergence rale that is independent of gridsize and aspect ratios. The results could be extended to parabolic equations.
文摘In this paper, the unitarily invariant norm \\.\\ on C-mxn is used. We first discuss the problem under what case, a rectangular matrix A has minimum condition number K(A) = \\A\\ \\A(+)\\, where A(+) designates the Moore-Penrose inverse of A; and under what condition, a square matrix A has minimum condition number for its eigenproblem? Then we consider the second problem, i.e., optimum of K(A) = \\A\\ \\A(-1)\\(2) in error estimation.