With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough att...With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough attention.To further extend the scope of PBC’s application in the field of maintenance optimization,we investigate the condition-based maintenance(CBM)optimization for gamma deteriorating systems under PBC.Considering the repairable single-component system subject to the gamma degradation process,this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC.In the proposed CBM model,the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate.Then,a particle swarm algorithm(PSO)and related solution procedure are presented to solve the multiple decision variables in our proposed model.In the end,a numerical example is provided so as to demonstrate the superiority of the presented model.By comparing the proposed policy with the conventional ones,the superiority of our proposed policy is proved,which can bring more profits to providers and improve performance.Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy.A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.展开更多
Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading...Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption...Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.展开更多
Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optim...Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.展开更多
Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlati...Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.展开更多
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co...The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers.展开更多
To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is ...To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.展开更多
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ...Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.展开更多
I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replac...I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.展开更多
Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, p...Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems.展开更多
The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis a...The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.展开更多
A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect main...A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.展开更多
The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. I...The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.展开更多
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in...Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with WeibuU probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se...A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.展开更多
At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making f...At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.展开更多
文摘With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough attention.To further extend the scope of PBC’s application in the field of maintenance optimization,we investigate the condition-based maintenance(CBM)optimization for gamma deteriorating systems under PBC.Considering the repairable single-component system subject to the gamma degradation process,this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC.In the proposed CBM model,the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate.Then,a particle swarm algorithm(PSO)and related solution procedure are presented to solve the multiple decision variables in our proposed model.In the end,a numerical example is provided so as to demonstrate the superiority of the presented model.By comparing the proposed policy with the conventional ones,the superiority of our proposed policy is proved,which can bring more profits to providers and improve performance.Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy.A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.
基金supported by the National Natural Science Foundation of China(61873122)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
文摘Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.
基金supported by the National Natural Science Foundation of China(51705221)the China Scholarship Council(201606830028)+1 种基金the Fundamental Research Funds for the Central Universities(NS2015072)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0313)
文摘Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.
文摘Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.
基金This work is supported by the Next Generation Transportation Systems Center(NEXTRANS),USDOT's Region 5 University Transportation CenterThe work is also affiliated with Purdue University College of Engineering's Institute for Control,Optimization,and Networks(ICON)and Center for Intelligent Infrastructure(CII)initiatives.
文摘The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers.
基金the National Natural Science Foundation of China(60672164)the National High Technology Research and Development Program of China(863Program)(2006AA04Z427)~~
文摘To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.
基金supported by Basic Science Research Program through the National Natural Science Foundation of China(Grant No.61867003)Key Project of Science and Technology Research and Development Plan of China Railway Co.,Ltd.(N2022X009).
文摘Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.
文摘I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.
基金the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2019-05361)and the University Research Grants Program.
文摘Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems.
基金performed within the project ARCWIND-adaptation and implementation of floating wind energy conversion technology for the Atlantic region-which is co-financed by the European Regional Development Fund through the Interreg Atlantic Area Program under contract EAPA 344/2016
文摘The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.
基金supported by the National watural Science Foundation of China (60904002)
文摘A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.
基金supported by National Natural Science Foundation of China (Grant No. 51005041)Fundamental Research Funds for the Central Universities of China (Grant No. N090303005)Key National Science & Technology Special Project on High-Grade CNC Machine Tools and Basic Manufacturing Equipment of China (Grant No. 2010ZX04014-014)
文摘The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2003CB317001)Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 07A018)+1 种基金Hunan Provincial Natural Science Foundation of China (Grant No. 07JJ5074)National Natural Science Foundation of China (Grant No. 50875082)
文摘Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with WeibuU probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
文摘A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.
文摘At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.