With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough att...With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough attention.To further extend the scope of PBC’s application in the field of maintenance optimization,we investigate the condition-based maintenance(CBM)optimization for gamma deteriorating systems under PBC.Considering the repairable single-component system subject to the gamma degradation process,this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC.In the proposed CBM model,the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate.Then,a particle swarm algorithm(PSO)and related solution procedure are presented to solve the multiple decision variables in our proposed model.In the end,a numerical example is provided so as to demonstrate the superiority of the presented model.By comparing the proposed policy with the conventional ones,the superiority of our proposed policy is proved,which can bring more profits to providers and improve performance.Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy.A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.展开更多
To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is ...To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.展开更多
A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect main...A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.展开更多
The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis a...The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.展开更多
Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading...Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.展开更多
At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making f...At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.展开更多
Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optim...Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.展开更多
The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in di...The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in different industries are surveyed; Second, many methods of condition monitoring are presented; Third, mathematical methods used in condition monitoring are given; Then the merits and shortcomings are discussed. Efficient maintenance policies are of fundamental importance in system engineering because of their fallbacks into the safety and economics of plant operation. Applying condition-based maintenance to a system can reduce the cost and extend the availability of facilities. With the advent of personal computers as fast and cost effective machines for data acquisition and processing of multiple signals some shortcomings mentioned in condition monitoring could be solved or reduced to some extent. These PCs can be a solution as a condition monitoring based maintenance system.展开更多
Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accide...Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.展开更多
Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlati...Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.展开更多
The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenan...The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenance. With the development of computer technology and sensors, on-line monitoring of high-voltage electric power equipment has developed rapidly. By introducing the main principle of Schering bridge to measure tanδ, the way of on-line monitoring of high-voltage electric power equipment was explained. Difference methods of on-line monitoring of insulation parameters for 35 kV substation were discussed. Finally, the shortcomings as well as its tendency of on-line monitoring were analyzed.展开更多
Objectives:To access the effectiveness of our modified right-ventricular overhauling procedure on tricuspid valve(TV)growth in patients with pulmonary atresia with intact ventricular septum(PAIVS).Methods:We retrospec...Objectives:To access the effectiveness of our modified right-ventricular overhauling procedure on tricuspid valve(TV)growth in patients with pulmonary atresia with intact ventricular septum(PAIVS).Methods:We retrospectively reviewed 21 patients with PAIVS who underwent modified right ventricular overhauling(mRVoh)between 2008 and 2019 at two institutions.Our mRVoh consisted of wide resection of hypertrophied infundibular and trabecular muscle,peeling off fibrotic endocardial tissue in the right ventricle(RV)cavity,surgical pulmonary valvotomy,and Blalock-Taussig shunt or banding of ductus arteriosus under cardiopulmonary bypass.The TV annulus sizes were measured and analyzed using echocardiography before and after mRVoh.Results:No mortalities were observed during a median follow-up of 3 years(interquartile range:1.3–4.7 years)of follow-up were noted.mRVoh was performed at a median age of 163.5 days(range:21–560 days),including seven neonates and two infants(<60 days).During follow-up,the median TV annular z-score increased significantly from−2.24 to−1.15 before and after mRVoh(p=0.004).In ten patients with a prior history of percutaneous interventions for RV outflow tract(RVOT)widening at least 6 months before mRVoh,the TV annular z-score significantly changed during the period after mRVoh(−2.03 to−1.61,p=0.028)compared with the period before mRVoh(−2.51→–2.03,p=0.575)after percutaneous intervention only.Conclusions:mRVoh in PAIVS patients was positively associated with TV annular growth,and it was more effective than percutaneous RVOT widening interventions without mRVoh.展开更多
针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生。首先,针对不同预测任务,提出一种基于优先级的特征自选取策...针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生。首先,针对不同预测任务,提出一种基于优先级的特征自选取策略,并使用LightGBM(Light Gradient Boosting Machine)算法作为特征选择策略的依托预测模型,得到对预测结果有积极影响的输入特征;然后,针对不同预测任务分别采用LightGBM算法和LSTM(Long Short Term Memory)神经网络构建预测模型;最后,经实验评估和分析,在风机检修业务流程中,特征选择策略能够为不同的预测任务提供有效特征,确保预测的准确率,具有实际应用价值。对于不同预测任务而言,LightGBM算法更适用于下一事件任务预测,LSTM模型更适用于时间方面的任务预测。展开更多
文摘With the further development of service-oriented,performance-based contracting(PBC)has been widely adopted in industry and manufacturing.However,maintenance optimization problems under PBC have not received enough attention.To further extend the scope of PBC’s application in the field of maintenance optimization,we investigate the condition-based maintenance(CBM)optimization for gamma deteriorating systems under PBC.Considering the repairable single-component system subject to the gamma degradation process,this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC.In the proposed CBM model,the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate.Then,a particle swarm algorithm(PSO)and related solution procedure are presented to solve the multiple decision variables in our proposed model.In the end,a numerical example is provided so as to demonstrate the superiority of the presented model.By comparing the proposed policy with the conventional ones,the superiority of our proposed policy is proved,which can bring more profits to providers and improve performance.Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy.A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.
基金the National Natural Science Foundation of China(60672164)the National High Technology Research and Development Program of China(863Program)(2006AA04Z427)~~
文摘To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.
基金supported by the National watural Science Foundation of China (60904002)
文摘A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.
基金performed within the project ARCWIND-adaptation and implementation of floating wind energy conversion technology for the Atlantic region-which is co-financed by the European Regional Development Fund through the Interreg Atlantic Area Program under contract EAPA 344/2016
文摘The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.
基金supported by the National Natural Science Foundation of China(61873122)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.
文摘At present, condition monitoring and fault diagnosis technology and their application in engineering have been widely studied. Relatively little attention has been paid to condition-based maintenance decision-making for equipment. In this paper,based on the decision-making policy in traditional condition-based maintenance,the connotation of condition-based maintenance for equipment was defined, and its characteristics were analyzed.Working contents of condition-based maintenance for equipment were provided,which were divided into three stages. The influence factors in condition-based maintenance for equipment were analyzed. The key links of equipment maintenance contents and decision-making process were proposed. The condition-based maintenance decision-making policy presented in this paper can provide a practical reference for equipment maintenance.
基金supported by the National Natural Science Foundation of China(51705221)the China Scholarship Council(201606830028)+1 种基金the Fundamental Research Funds for the Central Universities(NS2015072)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0313)
文摘Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, StateEducation Ministry.
文摘The evolution of maintenance management is briefly introduced in this paper, from corrective maintenance to preventive maintenance. First, a range of condition monitoring and fault diagnosis techniques developed in different industries are surveyed; Second, many methods of condition monitoring are presented; Third, mathematical methods used in condition monitoring are given; Then the merits and shortcomings are discussed. Efficient maintenance policies are of fundamental importance in system engineering because of their fallbacks into the safety and economics of plant operation. Applying condition-based maintenance to a system can reduce the cost and extend the availability of facilities. With the advent of personal computers as fast and cost effective machines for data acquisition and processing of multiple signals some shortcomings mentioned in condition monitoring could be solved or reduced to some extent. These PCs can be a solution as a condition monitoring based maintenance system.
基金Fundamental Research Funds for the Central Universities,China(No.DUT17GF214)
文摘Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.
文摘Overview about three key contents of condition-based maintenance decision-making of a multi-component system is analyzed based on maintenance optimization and modeling. The component deterioration model, the correlation between the degraded components and the system configuration are analyzed separately in the deterioration model of multi-component system.For the maintenance polices,the opportunistic maintenance( OM)policy and the grouping maintenance( GM) policy are analyzed and summarized in combination with the condition-based maintenance( CBM) modeling of multi-component system. It is put forward that CBM modeling of multi-component system should be further researched based on the inspection interval and the maintenance threshold of multi-component system in availability.
文摘The development process of high-voltage electric power equipment maintenance was introduced. It is pointed out that the trend of high-voltage electric power equipment maintenance is so called condition-based maintenance. With the development of computer technology and sensors, on-line monitoring of high-voltage electric power equipment has developed rapidly. By introducing the main principle of Schering bridge to measure tanδ, the way of on-line monitoring of high-voltage electric power equipment was explained. Difference methods of on-line monitoring of insulation parameters for 35 kV substation were discussed. Finally, the shortcomings as well as its tendency of on-line monitoring were analyzed.
文摘Objectives:To access the effectiveness of our modified right-ventricular overhauling procedure on tricuspid valve(TV)growth in patients with pulmonary atresia with intact ventricular septum(PAIVS).Methods:We retrospectively reviewed 21 patients with PAIVS who underwent modified right ventricular overhauling(mRVoh)between 2008 and 2019 at two institutions.Our mRVoh consisted of wide resection of hypertrophied infundibular and trabecular muscle,peeling off fibrotic endocardial tissue in the right ventricle(RV)cavity,surgical pulmonary valvotomy,and Blalock-Taussig shunt or banding of ductus arteriosus under cardiopulmonary bypass.The TV annulus sizes were measured and analyzed using echocardiography before and after mRVoh.Results:No mortalities were observed during a median follow-up of 3 years(interquartile range:1.3–4.7 years)of follow-up were noted.mRVoh was performed at a median age of 163.5 days(range:21–560 days),including seven neonates and two infants(<60 days).During follow-up,the median TV annular z-score increased significantly from−2.24 to−1.15 before and after mRVoh(p=0.004).In ten patients with a prior history of percutaneous interventions for RV outflow tract(RVOT)widening at least 6 months before mRVoh,the TV annular z-score significantly changed during the period after mRVoh(−2.03 to−1.61,p=0.028)compared with the period before mRVoh(−2.51→–2.03,p=0.575)after percutaneous intervention only.Conclusions:mRVoh in PAIVS patients was positively associated with TV annular growth,and it was more effective than percutaneous RVOT widening interventions without mRVoh.
文摘针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生。首先,针对不同预测任务,提出一种基于优先级的特征自选取策略,并使用LightGBM(Light Gradient Boosting Machine)算法作为特征选择策略的依托预测模型,得到对预测结果有积极影响的输入特征;然后,针对不同预测任务分别采用LightGBM算法和LSTM(Long Short Term Memory)神经网络构建预测模型;最后,经实验评估和分析,在风机检修业务流程中,特征选择策略能够为不同的预测任务提供有效特征,确保预测的准确率,具有实际应用价值。对于不同预测任务而言,LightGBM算法更适用于下一事件任务预测,LSTM模型更适用于时间方面的任务预测。