期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION 被引量:7
1
作者 XU Xusong CAO Yanlong YANG Jiangxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期140-142,共3页
A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless ... A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal. 展开更多
关键词 Information fusion Neural networks Condition monitoring Fault diagnosis
下载PDF
Mine-hoist fault-condition detection based on the wavelet packet transform and kernel PCA 被引量:3
2
作者 XIA Shi-xiong NIU Qiang ZHOU Yong ZHANG Lei 《Journal of China University of Mining and Technology》 EI 2008年第4期567-570,共4页
A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Princ... A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Principal Compo- nent Analysis, KPCA). For non-linear monitoring systems the key to fault detection is the extracting of main features. The wavelet packet transform is a novel technique of signal processing that possesses excellent characteristics of time-frequency localization. It is suitable for analysing time-varying or transient signals. KPCA maps the original input features into a higher dimension feature space through a non-linear mapping. The principal components are then found in the higher dimen- sion feature space. The KPCA transformation was applied to extracting the main nonlinear features from experimental fault feature data after wavelet packet transformation. The results show that the proposed method affords credible fault detection and identification. 展开更多
关键词 kernel method PCA KPCA fault condition detection
下载PDF
Landmarks in the application of electrical tomography in particle science and technology 被引量:4
3
作者 Richard A.Williams 《Particuology》 SCIE EI CAS CSCD 2010年第6期493-497,共5页
Selected milestones in the development and use of electrical tomography in powder conveying, slurry processing and multi-phase flow are highlighted. The ability to map concentration in opaque mixtures under process-re... Selected milestones in the development and use of electrical tomography in powder conveying, slurry processing and multi-phase flow are highlighted. The ability to map concentration in opaque mixtures under process-realistic conditions was a major innovation for the method and has had far reaching implications. Subsequent developments have enabled velocity information to be abstracted resulting in the ability to measure component flux and motion. 展开更多
关键词 Computational fluid dynamics Fault condition and maloperation Flow measurement Flow regime identification Particle concentration Process control Process safety
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部