期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Temperature-Dependent Electrical Conductance of Bi Nanowires
1
作者 霍鹏程 费广涛 +1 位作者 张阳 张立德 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第1期79-83,I0002,共6页
The single crystal bismuth nanowire arrays grown along [0112] with the diameter of 30 nm was synthesized in the pore of anodic aluminum oxide templates through electrodeposi- tion process. The temperature dependent el... The single crystal bismuth nanowire arrays grown along [0112] with the diameter of 30 nm was synthesized in the pore of anodic aluminum oxide templates through electrodeposi- tion process. The temperature dependent electric conductance of Bi nanowire arrays was measured from 78 K to 320 K. We found that the semimetal-to-semiconductor transition happened around 230 K for 30 nm Bi nanowires oriented along [0112] and the electric con- ductance of the nanowires had a strong temperature dependence. 展开更多
关键词 Bismuth nanowire Semimetal-to-semiconductor transition Electric conduc-tance
下载PDF
Characterization of Al_2O_3 /GaN/AlGaN/GaN metalinsulator-semiconductor high electron mobility transistors with different gate recess depths
2
作者 马晓华 潘才渊 +6 位作者 杨丽媛 于惠游 杨凌 全思 王昊 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期458-464,共7页
In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonst... In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate A1203 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine- based A1CaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of A1GaN/CaN HEMT. Through the recessed-gate etching, the transconductanee increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with Tit----(0.20--1.59) p^s and Dit :(0.55-1.08)x 1012 cm-2.eV- 1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AIGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively. 展开更多
关键词 A1GaN/GaN gate-recessed MIS-HEMT frequency-dependent capacitance and conduc-tance drain current injection technique knee resistance
下载PDF
Efficient Thickness of Solid Oxide Fuel Cell Composite Electrode
3
作者 蒋治亿 夏长荣 陈仿林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第2期217-225,I0002,共10页
The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transp... The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed. 展开更多
关键词 Composite electrode Solid oxide fuel cell Thickness Modeling Ionic conduc-tivity
下载PDF
THERMOELASTIC DAMPING IN A MICRO-BEAM RESONATOR TUNABLE WITH PIEZOELECTRIC LAYERS 被引量:2
4
作者 Armin Saeedi Vahdat Ghader Rezazadeh Goodarz Ahmadi 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第1期73-81,共9页
In this paper,thermoelastic damping (TED) in a micro-beam resonator with a pair of piezoelectric layers bonded on its upper and lower surfaces is investigated.Equation of motion is derived and the thermoelasticity e... In this paper,thermoelastic damping (TED) in a micro-beam resonator with a pair of piezoelectric layers bonded on its upper and lower surfaces is investigated.Equation of motion is derived and the thermoelasticity equation is governed using two dimensional non-Fourier heat conduction model based on continuum theory frame.Applying Galerkin discretization method and complex-frequency approach to solve the equations of coupled thermoelasticity,we study TED of a clamped-clamped micro-beam resonator.The presented results demonstrate that thickness of the piezoelectric layers and application of DC voltage to them can affect the TED ratio and the critical thickness value of the resonator. 展开更多
关键词 MEMS thermoelastic damping piezoelectric RESONATOR non-Fourier heat conduc-tion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部