This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their the...This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source. Results show that the thermal conductivity of granular AC with different sizes al-most maintains a constant at 0.36 W-(m.K)-', while the value modestly increases to 0.40 W.(m.K)-' for the con- solidated AC with chemical binder. The consolidated AC with ENG at the density of 600 kg. m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W-(m.K)- to 2.61 W. (m.K)-1 according toits fraction of AC. However, the granular AC and consolidated AC with chemical binder show the better permeabil- ity performance than consolidated AC with ENG binder whose permeability changes from 6.98x10-13 m2 to 5.16x10TM m2 and the maximum occurs when the content of AC reaches 71.4% (by mass). According to the differ- ent thermal properties, the refrigeration application of three types of adsorbents is analyzed.展开更多
基金Supported by the National Science Foundation for Excellent Young Scholars (51222601), the International Collaborating Project Funded by the Foundation of Science and Technology Commission of Shanghai Municipality (11160706000), the Program for New Century Excellent Talents in University by the Ministry of Education of China and the Shanghai Pujiang Program of China.
文摘This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source. Results show that the thermal conductivity of granular AC with different sizes al-most maintains a constant at 0.36 W-(m.K)-', while the value modestly increases to 0.40 W.(m.K)-' for the con- solidated AC with chemical binder. The consolidated AC with ENG at the density of 600 kg. m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W-(m.K)- to 2.61 W. (m.K)-1 according toits fraction of AC. However, the granular AC and consolidated AC with chemical binder show the better permeabil- ity performance than consolidated AC with ENG binder whose permeability changes from 6.98x10-13 m2 to 5.16x10TM m2 and the maximum occurs when the content of AC reaches 71.4% (by mass). According to the differ- ent thermal properties, the refrigeration application of three types of adsorbents is analyzed.