Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate...Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.展开更多
Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the...Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the case in projection welding of complex joints. In this paper, a new approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle and the conduction angle of silicon controlled rectifiers with the aid of a series of proof resistances. The model predicts the weld current and the conduction angle (or heat setting) at each set current, when the workpiece resistance is given.展开更多
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,...A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.展开更多
Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best o...Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene.展开更多
Objectives To search the method of culturing human trabecular cells (HTC) on a filter support so as to provide a model to study the hydraulic conductivity of HTC in vivo.Methods The third passage of HTC was cultured...Objectives To search the method of culturing human trabecular cells (HTC) on a filter support so as to provide a model to study the hydraulic conductivity of HTC in vivo.Methods The third passage of HTC was cultured on a nylon filter; after that we measured the rate of different irrigations through the filter with HTC [Lp, μl/(min· mm Hg·cm 2)]. Results HTC could continuously grow on the filters. The normal Lp was 10.45 μl/(min·mm Hg·cm 2). Irrigated by the solution of epinephrine (EPI) or dexamethasone (DEX), Lp of HTC were higher than that in controls of the same cultural time, while after being exposed to DEX for a few days, Lp was significantly decreased.Conclusions (1) More information of hydraulic conductivity and effects of pharmacologic agents on HTC could be got from the dynamic filtery model; (2) EPI could improve the conductivity of HTC while DEX could have the same effect in early period.展开更多
基金Supported by College Doctoral- Program Special ResearchFund of the Ministry of Education (No.970 0 562 1 )
文摘Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.
文摘Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the case in projection welding of complex joints. In this paper, a new approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle and the conduction angle of silicon controlled rectifiers with the aid of a series of proof resistances. The model predicts the weld current and the conduction angle (or heat setting) at each set current, when the workpiece resistance is given.
基金supported by the National Natural Science Foundation of China(51506160,11472208,11472209)China Post-Doctoral Science Foundation Project(2015M580845)+1 种基金the Fundamental Research Funds for Xi’an Jiaotong University(xjj2015102)the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01)
文摘A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51376005 and 11474243)
文摘Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene.
文摘Objectives To search the method of culturing human trabecular cells (HTC) on a filter support so as to provide a model to study the hydraulic conductivity of HTC in vivo.Methods The third passage of HTC was cultured on a nylon filter; after that we measured the rate of different irrigations through the filter with HTC [Lp, μl/(min· mm Hg·cm 2)]. Results HTC could continuously grow on the filters. The normal Lp was 10.45 μl/(min·mm Hg·cm 2). Irrigated by the solution of epinephrine (EPI) or dexamethasone (DEX), Lp of HTC were higher than that in controls of the same cultural time, while after being exposed to DEX for a few days, Lp was significantly decreased.Conclusions (1) More information of hydraulic conductivity and effects of pharmacologic agents on HTC could be got from the dynamic filtery model; (2) EPI could improve the conductivity of HTC while DEX could have the same effect in early period.