期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Energy level engineering of charge selective contact and halide perovskite by modulating band offset:Mechanistic insights 被引量:1
1
作者 Yassine Raoui Hamid Ez-Zahraouy +1 位作者 Samrana Kazim Shahzada Ahmad 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期822-829,共8页
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron... Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset. 展开更多
关键词 Device modelling Electron affinity conduction band offset Valence band offset Charge recombination Perovskite solar cell
下载PDF
Effect of Defects at the Buffer Layer CdS/Absorber CIGS Interface on CIGS Solar Cell Performance
2
作者 Boureima Traoré Soumaïla Ouédraogo +4 位作者 Marcel Bawindsom Kébré Daouda Oubda Issiaka Sankara Adama Zongo François Zougmoré 《Advances in Chemical Engineering and Science》 2023年第4期289-300,共12页
This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of def... This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV. 展开更多
关键词 Numerical Simulation CdS/CIGS Interface Interface Defects conduction band offset (CBO) Surface Defect Layer (SDL)
下载PDF
Comprehensive Analysis of CuIn<sub>1-x</sub>Ga<sub>x</sub>Se<sub>2</sub>Based Solar Cells with Zn<sub>1-y</sub>Mg<sub>y</sub>O Buffer Layer
3
作者 Soumaïla Ouédraogo Marcel Bawindsom Kébré +2 位作者 Ariel Teyou Ngoupo Daouda Oubda François Zougmoré 《Materials Sciences and Applications》 2020年第12期880-892,共13页
The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis u... The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis using SCAPS-1D software was used to explore the Zn(Mg,O) layer as an alternative to the toxic CdS layer. The effect of several properties such as thickness, doping, Mg concentration of the Zn(Mg,O) layer on the current-voltage parameters was explored and their optimal values were proposed. The simulation results reveal that the optimal value of the ZMO layer thickness is approximately 40 nm, the doping at 10<sup>17</sup> cm<sup>-3</sup> and an Mg composition between 0.15 and 0.2. In addition, the effect of Gallium (Ga) content in the absorber as well as the Zn(Mg,O)/CIGS interface properties on the solar cell’s performance was examined. The results show that contrary to the CdS buffer layer, the best electrical characteristics of the ZMO/CIGS heterojunction are obtained using a Ga-content equal to 0.4 and high interface defect density or unfavorable band alignment may be the causes of poor performances of Zn(Mg,O)/CIGS solar cells in the case of low and high Mg-contents. 展开更多
关键词 Device Modeling Zn(Mg O) Cu(In Ga)Se2 Interface Sates conduction band offset
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部