Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive ...Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive properties of the ceramic ECAs were studied.The bulk electrical resistivity varied with the powder content of the FCC-TiB in ECAs.The FCC-TiB filled ECAs also showed the percolation behavior that usually occurred for the metal-filled ECAs,the percolation threshold was located at the content of 60%FCC-TiB.A minimum value of 0.1 Ω·cm was obtained at a content of 75%FCC-TiB.In order to check the reliability of mechanical property,tensile test was done to measure the shear strength,and the shear strength dropped with increasing the content of FCC-TiB powders.It is about 12.26 MPa at the content of 70%TiB powders.The Cu filled ECAs were also prepared for comparison.The properties of the oxidation resistance of the two ECAs were evaluated.The results show that the ceramic ECAs have excellent oxidation resistance and better stability compared with the Cu filled ECAs.展开更多
The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of...The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of applying constant voltage and distilled water environment.ECM resistance was determined from the current-time curves.The microstructure and composition of ECM dendrite products were analyzed by SEM/EDS and XRD.It was found that the ECM resistance of Ag-plated Cu composite powder-filled ECAs was evidently higher than that of pure Ag powder-filled ECAs.The Ag:Cu ratio of composite powder in ECAs had notable influence on ECM resistance,which was enhanced with the decrease of Ag:Cu ratios.The composition of dendrites formed between cathode and anode during ECM process was not uniform for Ag-plated Cu-filled ECAs.An ECM inhibiting mechanism of Ag-plated Cu composite powder was proposed according to analysis of the electrochemical impedance spectroscopy,Tafel plot and dendrite composition.展开更多
This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a fill...This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.展开更多
Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency...Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency in just 1 min under dozens of DC voltage) and high initial bonding strength (>12 MPa) of epoxy-based ionic conductive adhesives (ICAs). The epoxy-based ICAs are fabricated by introducing polyethylene glycol dimethyl ether (PEGDE) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]OTF) into epoxy. The combination of PEGDE and [EMIM]OTF enables the free ions to migrate directively in electric field, and the anchoring of PEG chains onto epoxy chains ensures the long-term reliability of ICAs. The investigation on the electrically detaching mechanism suggests that the enrichment and following rapid interfacial electrochemical reactions of [EMIM]OTF lead to formation of metal hydroxide (Me(OH)n) nanoparticles at the bonding interfaces, thus the strong interactions containing interlocked forces, van de Waals’ forces and hydrogen bonding interactions between ICAs and bonding substrates are destroyed. This work provides a promising direction for detachable adhesives with both high initial bonding strength and high detaching efficiency in short time.展开更多
The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of s...The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of semiconductor microchips on printed circuits boards. In this sphere, the ECA compete with soft solder. In spite of this fact, the author utilized of two main ECA characteristics--good electrical conductivity and excellent adhesion to material surfaces to make the fiat thermocouples. Both the design of thermocouples and the measuring device and the measuring workplace arrangement are described. The measured data of thermoelectric voltages are plotted. The thermoelectric (Seebeck's) coefficients were calculated from obtained dependences of thermoelectric voltage versus the temperature differences.展开更多
The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescen...The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The resul...A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The results indicate that the conductivity of composites grows up slowly as the VGCF content is in the range of 10%-20%. It is very useful for industrial application to control the conductivity of composites by adjusting the VGCF content. In addition, at the range of - 50 - 120°C,the dependence of loss factor on the VGCF content varied with the temperature are tested and analyzed by dynamic mechanical and dielectric behavior measurement of the composites, and expected results are obtained.展开更多
The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the st...The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
基金Project (51172088) supported by the National Natural Science Foundation of China
文摘Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive properties of the ceramic ECAs were studied.The bulk electrical resistivity varied with the powder content of the FCC-TiB in ECAs.The FCC-TiB filled ECAs also showed the percolation behavior that usually occurred for the metal-filled ECAs,the percolation threshold was located at the content of 60%FCC-TiB.A minimum value of 0.1 Ω·cm was obtained at a content of 75%FCC-TiB.In order to check the reliability of mechanical property,tensile test was done to measure the shear strength,and the shear strength dropped with increasing the content of FCC-TiB powders.It is about 12.26 MPa at the content of 70%TiB powders.The Cu filled ECAs were also prepared for comparison.The properties of the oxidation resistance of the two ECAs were evaluated.The results show that the ceramic ECAs have excellent oxidation resistance and better stability compared with the Cu filled ECAs.
基金financially supported by the Special Funds of National Ministry of Finance for the Transformation of Industrial Technology Achievements (No.CJ2007-475)
文摘The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of applying constant voltage and distilled water environment.ECM resistance was determined from the current-time curves.The microstructure and composition of ECM dendrite products were analyzed by SEM/EDS and XRD.It was found that the ECM resistance of Ag-plated Cu composite powder-filled ECAs was evidently higher than that of pure Ag powder-filled ECAs.The Ag:Cu ratio of composite powder in ECAs had notable influence on ECM resistance,which was enhanced with the decrease of Ag:Cu ratios.The composition of dendrites formed between cathode and anode during ECM process was not uniform for Ag-plated Cu-filled ECAs.An ECM inhibiting mechanism of Ag-plated Cu composite powder was proposed according to analysis of the electrochemical impedance spectroscopy,Tafel plot and dendrite composition.
基金Project was supported by the Natural Science Foundation of Guangdong Province(No.2019A1515011844)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD201801 and 31512050201).
文摘This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.
基金supported by the National Natural Science Foundation of China (No. 52103097)the Doctor Foundation of Southwest University of Science and Technology (No. 20zx7144)+3 种基金the Special Foundation for Young Scientists of Sichuan Province (No. 71112541)the Guangdong Natural Science Foundation (No. 2021A1515010675)the Key Project of Guangzhou Science and Technology Plan Project (No. 201904020034)the Guangdong Project of R&D Plan in Key Areas (No. 2020B010180001).
文摘Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency in just 1 min under dozens of DC voltage) and high initial bonding strength (>12 MPa) of epoxy-based ionic conductive adhesives (ICAs). The epoxy-based ICAs are fabricated by introducing polyethylene glycol dimethyl ether (PEGDE) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]OTF) into epoxy. The combination of PEGDE and [EMIM]OTF enables the free ions to migrate directively in electric field, and the anchoring of PEG chains onto epoxy chains ensures the long-term reliability of ICAs. The investigation on the electrically detaching mechanism suggests that the enrichment and following rapid interfacial electrochemical reactions of [EMIM]OTF lead to formation of metal hydroxide (Me(OH)n) nanoparticles at the bonding interfaces, thus the strong interactions containing interlocked forces, van de Waals’ forces and hydrogen bonding interactions between ICAs and bonding substrates are destroyed. This work provides a promising direction for detachable adhesives with both high initial bonding strength and high detaching efficiency in short time.
文摘The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of semiconductor microchips on printed circuits boards. In this sphere, the ECA compete with soft solder. In spite of this fact, the author utilized of two main ECA characteristics--good electrical conductivity and excellent adhesion to material surfaces to make the fiat thermocouples. Both the design of thermocouples and the measuring device and the measuring workplace arrangement are described. The measured data of thermoelectric voltages are plotted. The thermoelectric (Seebeck's) coefficients were calculated from obtained dependences of thermoelectric voltage versus the temperature differences.
文摘The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
文摘A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The results indicate that the conductivity of composites grows up slowly as the VGCF content is in the range of 10%-20%. It is very useful for industrial application to control the conductivity of composites by adjusting the VGCF content. In addition, at the range of - 50 - 120°C,the dependence of loss factor on the VGCF content varied with the temperature are tested and analyzed by dynamic mechanical and dielectric behavior measurement of the composites, and expected results are obtained.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19S10462)+3 种基金Fundamental Research Funds for the Central Universities,China(Nos.2232017D-12 and 20K10405)Key Laboratory of Textile Science and Technology(Donghua University)Ministry of Education,China(No.KLTST201623)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-005388)。
文摘The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.