期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction
1
作者 代立东 胡海英 +2 位作者 李和平 孙文清 蒋建军 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期630-639,共10页
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i... The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field. 展开更多
关键词 electrical conductivity and diffusion coefficient K-feldspar anisotropy conduction mechanism
下载PDF
Thermostable Broad Band Polarizing PVA-Film: Theoretical and Experimental Investigations 被引量:3
2
作者 SIYAMAK Shahab LIUDMILA Filippovich +2 位作者 HORA A.Almodarresiyeh MASOOME Sheikhi RAKESH Kumar 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第2期186-197,共12页
In the present work, for the first time on the basis ofpoly (vinyl alcohol) (PVA), 2- (4-dimethylaminostyryl)-l-ethylquinolinium iodide (quinaldine red (QR)) and trisodium (4E)-5-oxo- 1-(4-sulfonatophenyl... In the present work, for the first time on the basis ofpoly (vinyl alcohol) (PVA), 2- (4-dimethylaminostyryl)-l-ethylquinolinium iodide (quinaldine red (QR)) and trisodium (4E)-5-oxo- 1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)hydrazono]-3 pyrazolecarboxylate (tartrazine (T)), thermostable polarizing film in a wide range of spectra (λmax=394-511 nm) with polarization efficiency (PE) = 98% in absorption maximum and stretching degree (Rs) = 3.5 was developed. The basic spectral-polarization parameters (polarization efficiency and transmittance) of oriented colored PVA-films were measured and discussed. During the work it was found that oriented PVA-films are the phenomenon of anisotropy of thermal conductivity (λ|/λ⊥). It is a very important parameter for the development of thermostable PVA-polarizing films. For the first time quantum-chemical calculations using density functional theory (DFT) approach for structural analysis and electronic spectrum of the QR were carried out via the B3LYP/dgdzvp and TDB3LYP/dgdzvp methods. Interpretation of absorption strips in visible region of spectrum was also reported. The excitation energies, electronic transitions and oscillator strengths for the studied structures have also been calculated (B3LYP/dgdzvp). The NBO analysis and Mulliken atomic charges of the QR were carried out. 展开更多
关键词 thermostable broad band polarizer fdm Quinaldine Red TARTRAZINE electronicspectrum anisotropy of thermal conductivity
下载PDF
Hybridization between microstructure and magnetization improvement in lead and RE co-doped BiFeO_3 被引量:3
3
作者 M.A.Ahmed S.F.Mansour +1 位作者 S.I.El-Dek M.M.Karamany 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第5期495-506,共12页
The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion techn... The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values. 展开更多
关键词 BiFeO3 multiferroic rare earths anisotropy dielectric conductivity Neel temperature
原文传递
Tailoring thermal conductivity of bulk graphene oxide by tuning the oxidation degree 被引量:2
4
作者 Qing-Long Meng Hengchang Liu +3 位作者 Zhiwei Huang Shuang Kong Peng Jiang Xinhe Bao 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期711-715,共5页
Bulk graphene oxide (GO) shows great potential in a variety of applications, such as sensors,photodetectors, supercapacitors, lithium ion batteries and catalysts. However, its thermal conductivity,one of the most im... Bulk graphene oxide (GO) shows great potential in a variety of applications, such as sensors,photodetectors, supercapacitors, lithium ion batteries and catalysts. However, its thermal conductivity,one of the most important and fundamental physical properties, is still less known. Herein, we havesystematically investigated the thermal conductivity of bulk GOs and find that it can be tailored by tuningtheir oxidation degree during preparation process. Notably, the cross-plane thermal conductivity of bulkGO, in comparison with its precursor graphite, exhibits more than 100 times decrease at roomtemperature. The dependence of thermal conductivity of GO on oxidation degree is attributed to thechemical and structural changes by introducing oxygen atoms and oxygen-containing functional groups,which can lead to a significant enhancement in atomic- and nano-scale phonon scattering. Furthermore,we reveal that the thermal conductivity of bulk GOs exhibits evident anisotropic behavior. These resultsprovide fundamental understanding and valuable information on thermal transport properties of bulkGOs for various practical applications. 展开更多
关键词 Graphene oxide Thermal conductivity Scattering center anisotropy Oxidation degree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部