期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites 被引量:3
1
作者 Yingke Zhu Zhonghui Shen +4 位作者 Yong Li Bin Chai Jie Chen Pingkai Jiang Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期221-236,共16页
Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications.Inorganic nanofillers with high insulation property are frequently... Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications.Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability.Normally,inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current.However,how these nanofillers effect the leakage current is still unclear.Meanwhile,high dopant(>5 vol%)is prerequisite for distinctly improved energy storage performance,which severely deteriorates the processing and mechanical property of polymer nanocomposites,hence brings high technical complication and cost.Herein,boron nitride nanosheet(BNNS)layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride(PVDF)nanocomposite.Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers,preventing the electron in PVDF from passing through inorganic layers,leading to suppressed leakage current and superior breakdown strength.Accompanied by improved Young’s modulus(from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite),significantly boosted discharged energy density(14.3 J cm^(-3)) and charge-discharge efficiency(75%)are realized in multilayered nanocomposites,which are 340 and 300% of PVDF(4.2 J cm^(-3),25%).More importantly,thus remarkably boosted energy storage performance is accomplished by marginal BNNS.This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance. 展开更多
关键词 Boron nitride nanosheet Conduction band EFFICIENCY Energy density BARRIER
下载PDF
Energy level engineering of charge selective contact and halide perovskite by modulating band offset:Mechanistic insights 被引量:2
2
作者 Yassine Raoui Hamid Ez-Zahraouy +1 位作者 Samrana Kazim Shahzada Ahmad 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期822-829,共8页
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron... Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset. 展开更多
关键词 Device modelling Electron affinity Conduction band offset Valence band offset Charge recombination Perovskite solar cell
下载PDF
Simultaneous Effects of Hydrostatic Pressure and Conduction Band Non-parabolicity on Binding Energies and Diamagnetic Susceptibility of a Hydrogenic Impurity in Spherical Quantum Dots 被引量:1
3
作者 G.Rezaei N.A.Doostimotlagh B.Vaseghi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期377-381,共5页
Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in ... Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/Alx- Ga1-x As spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolieity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure. 展开更多
关键词 non-parabolic conduction band hydrostatic pressure quantum dots hydrogenic impurity diamagnetic susceptibility
下载PDF
Effect of Defects at the Buffer Layer CdS/Absorber CIGS Interface on CIGS Solar Cell Performance
4
作者 Boureima Traoré Soumaïla Ouédraogo +4 位作者 Marcel Bawindsom Kébré Daouda Oubda Issiaka Sankara Adama Zongo François Zougmoré 《Advances in Chemical Engineering and Science》 2023年第4期289-300,共12页
This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of def... This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV. 展开更多
关键词 Numerical Simulation CdS/CIGS Interface Interface Defects Conduction band Offset (CBO) Surface Defect Layer (SDL)
下载PDF
The KP Dispersion Relation Near the Δ~i Valley in Strained Si_(1-x)Ge_x/Si 被引量:1
5
作者 宋建军 张鹤鸣 +2 位作者 舒斌 胡辉勇 戴显英 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第3期442-446,共5页
Based on an analysis of symmetry, the dispersion relations near the Ai valley in strained Si1-x Gex (0≤x〈0.45)/ (001), (111), (101)Si are derived using the KP method with perturbation theory. These relations... Based on an analysis of symmetry, the dispersion relations near the Ai valley in strained Si1-x Gex (0≤x〈0.45)/ (001), (111), (101)Si are derived using the KP method with perturbation theory. These relations demonstrate that △^i levels in strained Si1-x Gex are different from the △1 level in relaxed Si1-x Gex, while the longitudinal and transverse masses (m1^* and mt^* ) are unchanged under strain. The energy shift between the △^i levels and the △1 level follows the linear deformation potential theory. Finally,a description of the conduction band (CB) edge in biaxially strained layers is given. 展开更多
关键词 KP method conduction band strained SiGe
下载PDF
Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production 被引量:19
6
作者 Hong Du Ya‐Nan Liu +1 位作者 Cong‐Cong Shen An‐Wu Xu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1295-1306,共12页
Rapid industrialization has accordingly increased the demand for energy.This has resulted in the increasingly severe energy and environmental crises.Hydrogen production,based on the photocatalytic water splitting driv... Rapid industrialization has accordingly increased the demand for energy.This has resulted in the increasingly severe energy and environmental crises.Hydrogen production,based on the photocatalytic water splitting driven by sunlight,is able to directly convert solar energy into a usable or storable energy resource,which is considered to be an ideal alternative energy source to assist in solving the energy crisis and environmental pollution.Unfortunately,the hydrogen production efficiency of single phase photocatalysts is too low to meet the practical requirements.The construction of heterostructured photocatalyst systems,which are comprised of multiple components or multiple phases,is an efficient method to facilitate the separation of electron‐hole pairs to minimize the energy‐waste,provide more electrons,enhance their redox ability,and hence improve the photocatalytic activity.We summarize the recent progress in the rational design and fabrication of nanoheterostructured photocatalysts.The heterojunction photocatalytic hydrogen generation systems can be divided into type‐I,type‐II,pn‐junction and Z‐scheme junction,according to the differences in the transfer of the photogenerated electrons and holes.Finally,a summary and some of the challenges and prospects for the future development of heterojunction photocatalytic systems are discussed. 展开更多
关键词 HETEROJUNCTION Conduction band Valence band Charge transfer Photocatalytic hydrogen production
下载PDF
Comprehensive Analysis of CuIn<sub>1-x</sub>Ga<sub>x</sub>Se<sub>2</sub>Based Solar Cells with Zn<sub>1-y</sub>Mg<sub>y</sub>O Buffer Layer
7
作者 Soumaïla Ouédraogo Marcel Bawindsom Kébré +2 位作者 Ariel Teyou Ngoupo Daouda Oubda François Zougmoré 《Materials Sciences and Applications》 2020年第12期880-892,共13页
The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis u... The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis using SCAPS-1D software was used to explore the Zn(Mg,O) layer as an alternative to the toxic CdS layer. The effect of several properties such as thickness, doping, Mg concentration of the Zn(Mg,O) layer on the current-voltage parameters was explored and their optimal values were proposed. The simulation results reveal that the optimal value of the ZMO layer thickness is approximately 40 nm, the doping at 10<sup>17</sup> cm<sup>-3</sup> and an Mg composition between 0.15 and 0.2. In addition, the effect of Gallium (Ga) content in the absorber as well as the Zn(Mg,O)/CIGS interface properties on the solar cell’s performance was examined. The results show that contrary to the CdS buffer layer, the best electrical characteristics of the ZMO/CIGS heterojunction are obtained using a Ga-content equal to 0.4 and high interface defect density or unfavorable band alignment may be the causes of poor performances of Zn(Mg,O)/CIGS solar cells in the case of low and high Mg-contents. 展开更多
关键词 Device Modeling Zn(Mg O) Cu(In Ga)Se2 Interface Sates Conduction band Offset
下载PDF
Linear and Nonlinear Optical Properties of Spherical Quantum Dots:Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity 被引量:4
8
作者 G.Rezaei B.Vaseghi N.A.Doostimotlagh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第3期485-489,共5页
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-xAs spherical quantum dot a... Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-xAs spherical quantum dot are theoretically investigated, using the Luttinger-Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coemcients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes. 展开更多
关键词 hydrogenic impurity non-parabolic conduction band quantum dots absorption coefficient refractive index
原文传递
Simultaneous Effects of External Electric Field and Conduction Band Nonparabolicity on Optical Properties of a GaAs Quantum Dot Embedded at the Center of a GaAlAs Nano-Wire
9
作者 Gh.Safarpour M.A.Izadi +2 位作者 M.Novzari E.Niknam M.M.Golshan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第6期765-772,共8页
An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The ba... An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolieity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolieity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities. 展开更多
关键词 nonlinear optics conduction band nonparabolicity electric field spherical quantum dot
原文传递
ACCEPTOR IMPURITY BAND CONDUCTANCE IN ZERO-GAP Hg_(1-x)Cd_xTe
10
作者 梁勇 郑国珍 汤定元 《Science China Mathematics》 SCIE 1988年第1期46-56,共11页
The anomalous dips A1, A2 on mobility versus temperature curves are studied in different magnetic fields. The experimental results show that A1, A2 are caused by the acceptor band conductance when the acceptor density... The anomalous dips A1, A2 on mobility versus temperature curves are studied in different magnetic fields. The experimental results show that A1, A2 are caused by the acceptor band conductance when the acceptor density in the conduction band is sufficiently high, and A1 is caused by mercury vacancies. 展开更多
关键词 x)Cd_xTe ACCEPTOR IMPURITY band CONDUCTANCE IN ZERO-GAP Hg Hall CdTe
原文传递
ELECTRONIC ENERGY BAND STRUCTURE OF MOLECULAR CRYSTALS MCI·(TCNQ)_2 AND ITS RELATIONSHIP WITH THE ELECTRICAL CONDUCTION
11
作者 张启元 严继民 《Science China Chemistry》 SCIE EI CAS 1990年第10期1163-1171,共9页
The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are... The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol. 展开更多
关键词 structure of electronic energy bands energy bands and the electrical conductivities molecular crystal MIC·(TCNQ)_2
原文传递
Atomically Precise Pd Species Accelerating CO_(2) Hydrodeoxygenation into CH_(4) with 100%Selectivity
12
作者 Kai Zheng Siying Liu +14 位作者 Bangwang Li Juncheng Zhu Xiaojing Zhang Mingyu Wu Li Li Shan Zhu Wenxiu Liu Jun Hu Chengyuan Liu Minghui Fan Ming Zuo Junfa Zhu Yang Pan Yongfu Sun Yi Xie 《Precision Chemistry》 2023年第9期530-537,共8页
High-rate CO_(2)-to-CH_(4)photoreduction with high selectivity is highly attractive,which is a win-win strategy for mitigating the greenhouse effect and the energy crisis.However,the poor photocatalytic activity and l... High-rate CO_(2)-to-CH_(4)photoreduction with high selectivity is highly attractive,which is a win-win strategy for mitigating the greenhouse effect and the energy crisis.However,the poor photocatalytic activity and low product selectivity hinder the practical application.To precisely tailor the product selectivity and realize high-rate CO_(2)photoreduction,we design atomically precise Pd species supported on In_(2)O_(3)nanosheets.Taking the synthetic 1.30Pd/In_(2)O_(3)nanosheets as an example,the aberration-correction high-angle annular dark-field scanning transmission electron microscopy image displayed the Pd species atomically dispersed on the In_(2)O_(3)nanosheets.Raman spectra and X-ray photoelectron spectra established that the strong interaction between the Pd species and the In_(2)O_(3)substrate drove electron transfer from In to Pd species,resulting in electron-enriched Pd sites for CO_(2)activation.Synchrotronradiation photoemission spectroscopy demonstrated that the Pd species can tailor the conduction band edge of In_(2)O_(3)nanosheets to match the CO_(2)-to-CH_(4)pathway,instead of the CO_(2)-to-CO pathway,which theoretically accounts for the high CH_(4)selectivity.Moreover,in situ X-ray photoelectron spectroscopy unveiled that the catalytically active sites had a change from In species to Pd species over the 1.30Pd/In_(2)O_(3)nanosheets.In situ FTIR and EPR spectra reveal the atomically precise Pd species with rich electrons prefer to adsorb the electrophilic protons for accelerating the*COOH intermediates hydrogenation into CH_(4).Consequently,the 1.30Pd/In_(2)O_(3)nanosheets reached CO_(2)-to-CH_(4)photoconversion with 100%selectivity and 81.2μmol g^(−1)h^(−1)productivity. 展开更多
关键词 CO_(2)-to-CH_(4)pathway atomically precise Pd species conduction band edge CH4 selectivity photoelectrons transfer
原文传递
Spectrum redshift effect of anatase TiO_2 codoped with nitrogen and first transition elements 被引量:2
13
作者 辜永红 蔡从中 +1 位作者 冯庆 李艳华 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第9期59-65,共7页
The electronic and optical properties, including band structure, density of states (DOS), absorption rate, refractive index, and dielectric function, of anatase TiO2 codoped with N and first transition elements are ... The electronic and optical properties, including band structure, density of states (DOS), absorption rate, refractive index, and dielectric function, of anatase TiO2 codoped with N and first transition elements are investigated using the plane wave pseudopotential method based on the density functional theory. The calculation results show that TiO2 codoping with N and first transition elements (Sc, V, Cr, Mn, and Fe) lead to significant reduction of conduction band relative to the Fermi level, reduction of band gap width, formation of new donor, and acceptor impurity levels below the conduction band and above the valence band, and cause some redshifts of optical absorption band edge with the amount of redshift decrease in the following order: N-Fe 〉 N-Cr 〉 N-Mn. Further, the synergistic effect of shallow donor and acceptor levels enhances light excitation for effective separation of electron-hole pairs and enhancement of light absorption ability, thereby increasing the TiO~ photocatalytic properties. This study reveals that the visible-light absorption ability of the codoped anatase TiO2 decreases in the order of N Fe 〉 N Cr 〉 N-Mn 〉 N-Sc 〉 N-V 〉 N, and does not monotonically follow the dopant atomic number. Especially, in N-Cr codoped TiO2, the 4s atomic orbit of Cr is not completely filled, which hybridized with the p electronic orbit most probably acts as photo-generated electron trap centers resulting in higher photocatalytie activity than that of N-Mn codoped TiO2. 展开更多
关键词 ATOMS Chromium Conduction bands Density functional theory Doping (additives) Energy gap LIGHT Light absorption Manganese Photocatalysis Refractive index SCANDIUM Transition metals
原文传递
Toward photocatalytic hydrogen generation over BiVO_(4) by controlling particle size 被引量:2
14
作者 Mengdi Sun Zemin Zhang +3 位作者 Qiujin Shi Jianlong Yang Mingzheng Xie Weihua Han 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第8期2419-2422,共4页
Owing to excellent light absorption and high activity fo r oxygen evolution,monoclinic bismuth vanadate(BiVO_(4)) is regarded as an ideal candidate for photocatalytic water splitting.However,its application is limited... Owing to excellent light absorption and high activity fo r oxygen evolution,monoclinic bismuth vanadate(BiVO_(4)) is regarded as an ideal candidate for photocatalytic water splitting.However,its application is limited by the large particle size in micrometer scale,as well as the slightly positive conduction band.In this work,we successfully synthesized nano-BiVO_(4) with particle size ranged from 27 nm to 57 nm by wet chemical method based on electrostatic spinning method.Unlike bulk BiVO_(4),the nano-sized BiVO_(4) possesses the ability to generate hydrogen by water splitting,and the activity could reach up to1.66 μmol h^(-1) g^(-1) with the assistance of Pt.The enhanced activity is mainly attributed to the improvements resulted from reduced particle size,which includes elevated conduction band,enlarged specific surface area and promoted charge separation.This work provides a simple method for synthesizing photocatalyst with small particle size and high yield. 展开更多
关键词 Nano-sized bismuth vanadate Electrospinning process Charge carrier separation Elevated conduction band Water splitting
原文传递
Synchrotron radiation photoemission spectrum study on K_3C_(60) film
15
作者 李宏年 徐亚伯 +5 位作者 鲍世宁 李海洋 何丕模 钱海杰 刘风琴 奎热西.易卜拉欣 《Science China Mathematics》 SCIE 2000年第11期1189-1194,共6页
K3C60 single crystal film was prepared on the cleaved (111) surface of C60 single crystal. Synchrotron radiation angle-resolved photoemission spectra were measured at normal emission with sample temperature at - 150K.... K3C60 single crystal film was prepared on the cleaved (111) surface of C60 single crystal. Synchrotron radiation angle-resolved photoemission spectra were measured at normal emission with sample temperature at - 150K. Up to four subpeaks of LUMO-derived band were observed. These sub-peaks exhibit distinct energy dispersions which resemble in general the theoretical ones calculated for K3C60 at low temperature with the so-called one-dimensional disordered structure. But there is large deviation of experimental sub-band intervals from the theoretical values. This result is meaningful for the studies of the physical properties of alkali-doped C60 solids, e.g. the mechanism for superconductivity. 展开更多
关键词 K_3C_(60)single crystal film SR-ARPES conduction band structure.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部