Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase(SEI)and consume electrolyte.In this article,γ-glycidoxypropyl trimethoxysilane(GOPS)was incorporated in Si...Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase(SEI)and consume electrolyte.In this article,γ-glycidoxypropyl trimethoxysilane(GOPS)was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial SEI,effectively suppressing the consumption of electrolyte.The optimized electrode can maintain 1000 mAh g^−1 for nearly 800 cycles under limited electrolyte compared with 40 cycles of the electrodes without GOPS.Also,the optimized electrode exhibits excellent rate capability.The use of GOPS greatly improves the interface compatibility between Si and PEDOT:PSS.XPS Ar+etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI.A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh kg^−1,offering good stability.展开更多
Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electro...Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electronic and ionic conductivities as well as good adhesion,has been successfully designed and applied for high-performance SiMP anodes in lithium-ion batteries to address this problem.Its unique features are attributed to the stro ng electron-withdrawing oxadiazole ring structure with sulfonate polar groups.The combination of rigid and flexible components in the polymer ensures its good mechanical strength and ductility,which is beneficial to suppress the expansion and contraction of SiMP s during the charge/discharge process.By fine-tuning the monomer ratio,the conjugation and sulfonation degrees of the polymer can be precisely controlled to regulate its ionic and electronic conductivities,which has been systematically analyzed with the help of an electrochemical test method,filling in the gap on the conductivity measurement of the polymer in the doping state.The experimental results indicate that the cell with the developed n-type polymer binder and SiMP(~0.5 μm) anodes achieves much better cycling performance than traditional non-conductive binders.It has been considered that the initial capacity of the SiMP anode is controlled by the synergetic effect of ionic and electronic conductivity of the binder,and the capacity retention mainly depends on its electronic conductivity when the ionic conductivity is sufficient.It is worth noting that the fundamental research of this wo rk is also applicable to other battery systems using conductive polymers in order to achieve high energy density,broadening their practical applications.展开更多
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金The work is supported by Science and Technology Commission of Shanghai Municipality(20520710400)National Natural Science Foundation of China(21771124)+1 种基金Oceanic Interdisciplinary Program(project number SL2020MS020)SJTU-Warwick Joint Seed Fund(2019/20)of Shanghai Jiao Tong University.
文摘Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase(SEI)and consume electrolyte.In this article,γ-glycidoxypropyl trimethoxysilane(GOPS)was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial SEI,effectively suppressing the consumption of electrolyte.The optimized electrode can maintain 1000 mAh g^−1 for nearly 800 cycles under limited electrolyte compared with 40 cycles of the electrodes without GOPS.Also,the optimized electrode exhibits excellent rate capability.The use of GOPS greatly improves the interface compatibility between Si and PEDOT:PSS.XPS Ar+etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI.A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh kg^−1,offering good stability.
基金supported by the Fundamental Research Funds for Central Universities of China and the Key Research and Development Projects of Sichuan(No.2020YFG0127)。
文摘Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electronic and ionic conductivities as well as good adhesion,has been successfully designed and applied for high-performance SiMP anodes in lithium-ion batteries to address this problem.Its unique features are attributed to the stro ng electron-withdrawing oxadiazole ring structure with sulfonate polar groups.The combination of rigid and flexible components in the polymer ensures its good mechanical strength and ductility,which is beneficial to suppress the expansion and contraction of SiMP s during the charge/discharge process.By fine-tuning the monomer ratio,the conjugation and sulfonation degrees of the polymer can be precisely controlled to regulate its ionic and electronic conductivities,which has been systematically analyzed with the help of an electrochemical test method,filling in the gap on the conductivity measurement of the polymer in the doping state.The experimental results indicate that the cell with the developed n-type polymer binder and SiMP(~0.5 μm) anodes achieves much better cycling performance than traditional non-conductive binders.It has been considered that the initial capacity of the SiMP anode is controlled by the synergetic effect of ionic and electronic conductivity of the binder,and the capacity retention mainly depends on its electronic conductivity when the ionic conductivity is sufficient.It is worth noting that the fundamental research of this wo rk is also applicable to other battery systems using conductive polymers in order to achieve high energy density,broadening their practical applications.