期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
1
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:4
2
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber Carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
3
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 Wearable strain sensors conductive polymer composites MECHANISM Sensing performance
下载PDF
Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands 被引量:4
4
作者 Seung Ji Kang Haeleen Hong +6 位作者 Chanho Jeong Ju Seung Lee Hyewon Ryu Jae-hun Yang Jong Uk Kim Yiel Jae Shin Tae-il Kim 《Nano Research》 SCIE EI CSCD 2021年第9期3253-3259,共7页
The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arr... The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays.A device in multiple chip array is affected by heat from adjacent devices,along with thermal conductive composite.To address this problem,we present a nano composite of aligned boron nitride(BN)nanosheet islands with porous polydimethylsiloxane(PDMS)foam to have mechanical stability and non-thermal interference.The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m^(-1)·K^(-1) in the through-plane direction(11.234W·m^(-1)·K^(-1)in the in-plane direction)with 16 wt.%loading of BN.On the other hand,porous PDMS foam has a low thermal conductivity of 0.0328W·m^(-1)·K^(-1) in the through-plane direction at 70%porosity.Heat pathways are then formed only in the structured BN islands of the composite.The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays.Furthermore,this composite can maintain selective thermal dissipation performance with 70%tensile strain.Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands,while inhibiting thermal interference.The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics. 展开更多
关键词 selective thermal conduction non-thermal interference thermal conductive composite island stretchable electronics structured boron nitride nanosheet(s-BN) porous polydimethylsiloxane(p-PDMS)
原文传递
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:12
5
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 Thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance Thermal conduction models Thermal conduction mechanisms
下载PDF
Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film 被引量:1
6
作者 Jingguang Yi Dan Zhou +3 位作者 Yuhao Liang Hong Liu Haifang Ni Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期17-24,共8页
All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer ... All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs. 展开更多
关键词 All-solid-state lithium batteries HIGH-PERFORMANCE composite solid electrolyte Ionic conductivity Artificial SEI Cycling stability
下载PDF
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina
7
作者 Chun-Yan Tang Lei Liu +3 位作者 Kai Ke Bo Yin Ming-Bo Yang Wei Yang 《Nano Materials Science》 EI CAS CSCD 2023年第3期312-318,共7页
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi... Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity. 展开更多
关键词 Thermoplastic polyurethane Carbon nanostructures ALUMINA conductive elastomer composites Stretchable strain sensor
下载PDF
Thermally Conductive,Healable Glass Fiber Cloth Reinforced Polymer Composite based onβ-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance
8
作者 Fang Chen Xiao-Yan Pang +2 位作者 Ze-Ping Zhang Min-Zhi Rong Ming-Qiu Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期643-654,I0009,共13页
To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds w... To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth(GFC@BNNSs).The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs.Then,the GFC@BNNSs were impregnated with the mixture of lower concentration(3-glycidyloxypropyl)trimethoxysilane grafted BN micron sheets,3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride,which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances.The resultant GFREP composite containing less boron nitride particles(17.6 wt%)exhibited superior in-plane(3.29 W·m^(-1)·K^(-1))and through-plane(1.16 W·m^(-1)·K^(-1))thermal conductivities,as well as high Tg of 204℃(Tg of the unfilled epoxy=177℃).The reversible transesterification reaction enabled closure of interlaminar cracks within the composite,achieving decent healing efficiencies estimated by means of tensile strength(71.2%),electrical breakdown strength(83.6%)and thermal conductivity(69.1%).The present work overcame the disadvantages of conventional thermally conductive composites,and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application. 展开更多
关键词 Thermally conductive composites Boron nitride High-temperature resistance β-Hydroxyl ester bond HEALING
原文传递
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
9
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer conductive polymer composites Biomedical device Transient electronics
下载PDF
Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding 被引量:1
10
作者 Jong-Hoon Lee Yoon-Sub Kim +2 位作者 Hea-Jin Ru Seul-Yi Lee Soo-Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期307-323,共17页
Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epo... Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices. 展开更多
关键词 conductive polymer composites Fracture toughness Flexible composites Absorption-dominated electromagnetic interference shielding
下载PDF
Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation
11
作者 Shida Han Yuan Ji +4 位作者 Qi Zhang Hong Wu Shaoyun Guo Jianhui Qiu Fengshun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期310-324,共15页
As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the hea... As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation.Pitch-based carbon fiber(CF)with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs.However,it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction.Here,three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process.By regulating the magnetic field direction and initial stacking density,the self-supporting CF scaffolds with horizontally aligned(HCS),diagonally aligned and vertically aligned(VCS)fibers were constructed.After embedding the polydimethylsiloxane(PDMS),the three composites exhibited unique heat transfer properties,and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m^(−1)K^(−1)in fiber alignment direction,respectively,which were about 209 and 224 times higher than that of PDMS.The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix.In addition,fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process,and the prepared composites exhibited a controlled heat transfer path,which can allow more versatility in the design of thermal management system. 展开更多
关键词 Carbon fiber Magnetic field Thermal management Thermally conductive composites
下载PDF
Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers 被引量:7
12
作者 Rui-Han Zhang Xue-Tao Shi +4 位作者 Lin Tang Zheng Liu Jun-Liang Zhang Yong-Qiang Guo Jun-Wei Gu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第7期730-739,I0006,共11页
Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosil... Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively. 展开更多
关键词 Thermally conductive composites Glass fibers Epoxy resin Silica-sol Surface functionalization
原文传递
Polymer-based EMI shielding composites with 3D conductive networks:A mini-review 被引量:24
13
作者 Lei Wang Zhonglei Ma +3 位作者 Yali Zhang Lixin Chen Dapeng Cao Junwei Gu 《SusMat》 2021年第3期413-431,共19页
High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the norma... High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected. 展开更多
关键词 3D conductive networks conductive polymer composites polymer-based EMI shielding mate-rials
原文传递
Flexible conductive polymer composites for smart wearable strain sensors 被引量:7
14
作者 Kangkang Zhou Kun Dai +1 位作者 Chuntai Liu Changyu Shen 《SmartMat》 2020年第1期72-76,共5页
Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detec... Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detection,and soft robotic skin.In recent decades,FCPC‐based strain sensors with high stretchability and sensitivity,short response time,and excellent stability have been developed,which are expected to be more versatile and intelligent.Smart strain sensors are required to provide wearable comfort,such as breathability,selfcooling ability,and so forth.To adapt to the harsh environment,wearable strain sensors should also be highly adaptive to protect the skin and the sensor itself.In addition,portable power supply system,multisite sensing capability,and multifunctionality are crucial for the next generation of FCPC‐based strain sensor. 展开更多
关键词 electrically conductive properties flexible conductive polymer composites MULTIFUNCTION wearable strain sensor
原文传递
Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators 被引量:1
15
作者 Reza Montazami Dong Wang James R.Heflin 《International Journal of Smart and Nano Materials》 SCIE EI 2012年第3期204-213,共10页
The influence of the nanostructure of the conductive network composite(CNC)on the performance of ionic electroactive polymer(IEAP)actuators has been examined in detail.We have studied IEAP actuators consisting of CNCs... The influence of the nanostructure of the conductive network composite(CNC)on the performance of ionic electroactive polymer(IEAP)actuators has been examined in detail.We have studied IEAP actuators consisting of CNCs with different volume densities of gold nanoparticles(AuNPs)and the polymer network.Varying the concentration of AuNPs in CNC thin films was used as a means to control the CNC-ion interfacial area and the electrical resistance of the CNC,with minimum effect on the mechanical properties of the actuator.Increasing the interfacial area and reducing the resistance,while maintaining porosity of the composite,provide means for generating motion of more ions into the CNC at a significantly shorter time,which results in generation of strain at a faster rate.We have demonstrated that cationic strain in actuators with denser CNCs is improved by more than 460%.Denser CNC structures have larger interfacial areas,which results in attraction/repulsion of more ions in a shorter time,thus generation of a larger mechanical strain at a faster rate.Also,time-dependent response to a square-wave voltage was improved by increasing the AuNP concentration in the CNC.Under 0.1 Hz frequency,the cationic strain was increased by 64%when the AuNP concentration was increased from 4 to 20 ppm. 展开更多
关键词 ionic electroactive polymer actuator functional thin film conductive network composite
原文传递
Recent Progress in All-Solution-Processed Organic Solar Cells
16
作者 Yixuan Xu Qian Wang +5 位作者 Wentao Zou Xu Zhang Yanna Sun Yuanyuan Kan Ping Cai Ke Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第2期190-198,共9页
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici... All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented. 展开更多
关键词 Organic solar cells All-solution-processed organic solar cells Solution-processed electrodes High performance Silver nanowires conductive polymers composite conducting materials
原文传递
Janus(BNNS/ANF)-(AgNWs/ANF)thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances 被引量:20
17
作者 Yixin Han Kunpeng Ruan Junwei Gu 《Nano Research》 SCIE EI CSCD 2022年第5期4747-4755,共9页
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i... Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). 展开更多
关键词 thermal conductivity composite film Janus structure aramid nanofibers electromagnetic interference shielding performance Joule heating
原文传递
Enhanced Reproducibility of Positive Temperature Coefficient Effect of CB/HDPE/PVDF Composites with the Addition of Ionic Liquid
18
作者 Long Chen Xiao Wu +1 位作者 Xiao-Fang Zhang Jian-Ming Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第2期228-236,I0008,共10页
Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC)effect is of great significance for large-scale application of polymer based PTC composites,owing to its contrib... Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC)effect is of great significance for large-scale application of polymer based PTC composites,owing to its contribution to the security and reliability.Herein,we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF)composite with outstanding PTC reproducibility,by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf2])into the composite.After multiple repeated temperature cycles,the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%.Our studies revealed that[OMIm][NTf2]contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii)it inhibits the crystallization of PVDF through the dilution effect,leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF.This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites. 展开更多
关键词 conductive polymer composites REPRODUCIBILITY Positive temperature coefficient Ionic liquid
原文传递
Magnetic field-induced strategy for synergistic CI/Ti_(3)C_(2)T_(x)/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance
19
作者 Qing Liu Yi Zhang +4 位作者 Yibin Liu Chunmei Li Zongxu Liu Baoliang Zhang Qiuyu Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期246-259,共14页
Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI s... Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials. 展开更多
关键词 Electromagnetic interference shielding conductive polymer composites Asymmetric/multilayer structure Magneto-electric synergism
原文传递
Silk Fibroin Based Conductive Film for Multifunctional Sensing and Energy Harvesting
20
作者 Xiaoyu Dong iang Liu +2 位作者 Sai Liu Ronghui Wu Liyun Ma 《Advanced Fiber Materials》 SCIE EI 2022年第4期885-893,共9页
Development of biomaterial based flexible electronics has got intensive attention owing to the potential applications in the wearable and epidermal devices.Silk fibroin,as a natural textile material with excellent per... Development of biomaterial based flexible electronics has got intensive attention owing to the potential applications in the wearable and epidermal devices.Silk fibroin,as a natural textile material with excellent performance,has been widely concerned by industry and academy.However,the property of electrical insulation limits his development in the field of flexible electronics.In this paper,a regenerated silk fibroin/carbon nanotube(RSF/CNT)conductive film has been successfully fabricated and applied in flexible capacitive-type pressure sensor and wearable triboelectric nanogenerator by a facile method.The electrical conductivity and mechanical property of RSF/CNT film was optimized by investigating with different composite ratio from 10 to 90%(W_(RSF)/W_(CNT)).The RSF/CNT film has a good photothermal response and electric heating performance.We furtherly demonstrated that the RSF/CNT based sensor can be used as epidermal self-powered sensor for multifunction human motion monitoring and Morse code compilation.The observed research results have shown that the RSF/CNT film has a wide range of potential application prospects in the wearable electronics field. 展开更多
关键词 Silk fibroin based material composite conductive film Capacitive-type pressure sensor Triboelectric nanogenerator Self-powered sensor
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部