期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fabrication of Conductive Domain Walls in x-cut Congruent Thin-film Lithium Niobate Using an Electrical-field Poling Technique(Invited)
1
作者 Su Yawen Chen Haiwei +6 位作者 Zhao Mengwei Niu Yunfei Li Chen Zhang Yong Yang Shaoguang Zhu Shining Hu Xiaopeng 《激光与光电子学进展》 CSCD 北大核心 2024年第11期50-56,共7页
Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail th... Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail the fabrication of conductive domain walls in x-cut congruent thin-film lithium niobate(TFLN)using an electrical-field poling technique.The ferroelectric domain structures can be controlled through the applied electrical field and applied pulse numbers,and the domain inversion process is related to the conduction characteristics of the domain walls.The domain structures in TFLN are revealed using confocal second-harmonic microscopy and piezoresponse force microscopy.The results provide further directions for the development and application of conductive domain walls in TFLN. 展开更多
关键词 thin-film lithium niobate electric field poling head-to-head/tail-to-tail domain conduction characteristics of domain wall
原文传递
Controlled manipulation of conductive ferroelectric domain walls and nanoscale domains in BiFeO_(3) thin films 被引量:1
2
作者 Dongfeng Zheng Guo Tian +9 位作者 Yadong Wang Wenda Yang Luyong Zhang Zoufei Chen Zhen Fan Deyang Chen Zhipeng Hou Xingsen Gao Qiliang Li Jun-Ming Liu 《Journal of Materiomics》 SCIE 2022年第2期274-280,共7页
Recently,there is a surge of research interest in configurable ferroelectric conductive domain walls which have been considered as possible fundamental building blocks for future electronic devices.In this work,by usi... Recently,there is a surge of research interest in configurable ferroelectric conductive domain walls which have been considered as possible fundamental building blocks for future electronic devices.In this work,by using piezoresponse force microscopy and conductive atomic force microscopy,we demonstrated the controlled manipulation of various conductive domain walls in epitaxial BiFeO_(3) thin films,e.g.neutral domain walls(NDW)and charged domain walls(CDWs).More interestingly,a specific type of nanoscale domains was also identified,which are surrounded by highly conductive circular CWDs.Similar nano-scale domains can also be controlled created and erasured by applying local field via conductive probe,which allow nondestructive current readout of different domain states with a large on/off resistance ratio up to 102.The results indicate the potential to design and develop high-density non-volatile ferroelectric memories by utilizing these programable conductive nanoscale domain walls. 展开更多
关键词 BiFeO_(3)thin film conductive domain wall Nanoscale domain High density memory
原文传递
Enhanced domain wall conductivity in photosensitive ferroelectrics Sn_(2)P_(2)S_(6) with full-visible-spectrum absorption 被引量:1
3
作者 Jianming Deng Xing’an Jiang +14 位作者 Yanyu Liu Wei Zhao Gang Tang Yun Li Sheng Xu Jinchen Wang Cheng Zhu Meixia Wu Jing Wang Zishuo Yao Qi Chen Xiaolei Wang Tian-Long Xia Xueyun Wang Jiawang Hong 《Science China Materials》 SCIE EI CAS CSCD 2022年第4期1049-1056,共8页
Recent optical stimulation suggests a vital non-contact pathway to manipulate both macroscopic and microscopic ferroelectric properties and paves the foundation for optoelectronics devices.However,up to date,most opti... Recent optical stimulation suggests a vital non-contact pathway to manipulate both macroscopic and microscopic ferroelectric properties and paves the foundation for optoelectronics devices.However,up to date,most optical-related manipulation of ferroelectric properties is restricted due to their intrinsic bandgap and limited visible light spectrum absorption.Here,we reveal non-oxide Sn_(2)P_(2)S_(6) single crystal possesses full-visible-spectrum absorption(from 300 to 800 nm)with a unique disproportionation mechanism of photoexcited Sn ions and Urbach tail,which is not contradicting to the intrinsic band gap.Interestingly,we observed the existence of conductive domain walls(c-DW)and the light illumination induced significant enhancement of the domain wall conductivity caused by such disproportionation reaction.In addition,the domains separated by c-DW also exhibited noticeable electrical conductivity difference in the presence of optical illumination owing to the interfacial polarization charge with opposite signs.The result provides a novel opportunity for understanding the electrical conductivity behavior of the domains and domain walls in ferroelectrics with full-visible-spectrum absorption and achieving greatly enhanced performances for optoelectronics. 展开更多
关键词 Sn_(2)P_(2)S_(6) FERROELECTRICITY conductive domain walls full-visible-spectrum absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部