We prepare stretchable elastic electromagnetic interference(EMI) shielding and stretchable antenna for wireless strain sensing using an elastic composite comprising commercial steel wool as a conducting element. The p...We prepare stretchable elastic electromagnetic interference(EMI) shielding and stretchable antenna for wireless strain sensing using an elastic composite comprising commercial steel wool as a conducting element. The prepared elastic conductor shows anisotropic electrical properties in response to the external force. In the stretchable range, the electrical resistance abnormally decreases with the increase of tensile deformation. The EMI shielding effectiveness of the elastic conductor can reach above-30 d B under 80% tensile strain. The resonance frequency of the dipole antenna prepared by the elastic conductor is linearly correlated with the tensile strain, which can be used as a wireless strain sensor. The transmission efficiency is stable at about-15 d B when stretched to 50% strain, with attenuation less than 5%. The current research provides an effective solution for stretchable EMI shielding and wireless strain sensing integrated with signal transmission by an antenna.展开更多
Developing high-areal-capacity and dendrite-free lithium(Li)anodes is of significant importance for the practical applications of the Li-metal secondary batteries.Herein,an effective strategy to stabilize the high-are...Developing high-areal-capacity and dendrite-free lithium(Li)anodes is of significant importance for the practical applications of the Li-metal secondary batteries.Herein,an effective strategy to stabilize the high-arealcapacity Li electrodeposition by modifying the Li metal with a stretchable ionic conductive elastomer(ICE)is demonstrated.The ICE layer prepared via an instant photocuring process shows a promising Li^(+)-ion conductivity at room temperature.When being used in Li-metal batteries,the thin ICE coating(~0.27μm)acts as both a stretchable constraint to minimize the Li loss and a protective layer to facilitate the uniform flux of Li ions.With this ICE-modifying strategy,the reversibility and cyclability of the Li anodes under high-areal-capacity condition in carbonate electrolyte are significantly improved,leading to a stable Li stripping/plating for 500 h at an ultrahigh areal capacity of 20 mAh cm^(-2)in commercial carbonate electrolyte.When coupled with industry-level thick LiFePO;electrodes(20.0 mg cm^(-2)),the cells with ICE-Li anodes show significantly enhanced rate and cycling capability.展开更多
The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers inte...The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers integrating non-volatility,mechanical robustness,superior ionic conductivity,and ultra-stretchability remains urgent and challenging.Here,we developed a healable,robust,and conductive elastomer via impregnating free ionic liquids(ILs)into the ILs-multigrafted poly(urethane-urea)(PUU)elastomer networks.A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained,which can lock the impregnated ILs through strong ionic interactions.In this system,the PUU matrix contributes outstanding mechanical properties,while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability,conductivity,as well as non-volatility and transparency.The fabricated ionic conductive elastomers show good conductivity(3.8×10^(-6) S·cm^(-1)),high mechanical properties,including tensile stress(4.64 MPa),elongation(1470%),and excellent healing ability(repairing efficiency of 90%after healing at room temperature for 12 h).Significantly,the conductive elastomers have excellent antifatigue properties,and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles.This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity,and further promote the development of mechanically adaptable intelligent sensors.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(Grant Nos.2016YFA0200200 and 2017YFB0307001)the National Natural Science Foundation of China(Grant Nos.51973093,U1533122,and 51773094)the Natural Science Foundation of Tianjin,China(Grant No.18JCZDJC36800)。
文摘We prepare stretchable elastic electromagnetic interference(EMI) shielding and stretchable antenna for wireless strain sensing using an elastic composite comprising commercial steel wool as a conducting element. The prepared elastic conductor shows anisotropic electrical properties in response to the external force. In the stretchable range, the electrical resistance abnormally decreases with the increase of tensile deformation. The EMI shielding effectiveness of the elastic conductor can reach above-30 d B under 80% tensile strain. The resonance frequency of the dipole antenna prepared by the elastic conductor is linearly correlated with the tensile strain, which can be used as a wireless strain sensor. The transmission efficiency is stable at about-15 d B when stretched to 50% strain, with attenuation less than 5%. The current research provides an effective solution for stretchable EMI shielding and wireless strain sensing integrated with signal transmission by an antenna.
基金supported by the National Natural Science Foundation of China under Grant No.51802225the funding from State Key Laboratory of Materials Processing and Die&Mould Technology。
文摘Developing high-areal-capacity and dendrite-free lithium(Li)anodes is of significant importance for the practical applications of the Li-metal secondary batteries.Herein,an effective strategy to stabilize the high-arealcapacity Li electrodeposition by modifying the Li metal with a stretchable ionic conductive elastomer(ICE)is demonstrated.The ICE layer prepared via an instant photocuring process shows a promising Li^(+)-ion conductivity at room temperature.When being used in Li-metal batteries,the thin ICE coating(~0.27μm)acts as both a stretchable constraint to minimize the Li loss and a protective layer to facilitate the uniform flux of Li ions.With this ICE-modifying strategy,the reversibility and cyclability of the Li anodes under high-areal-capacity condition in carbonate electrolyte are significantly improved,leading to a stable Li stripping/plating for 500 h at an ultrahigh areal capacity of 20 mAh cm^(-2)in commercial carbonate electrolyte.When coupled with industry-level thick LiFePO;electrodes(20.0 mg cm^(-2)),the cells with ICE-Li anodes show significantly enhanced rate and cycling capability.
基金supported by the National Natural Science Foundation of China(Nos.22275148,52203144,and 22375162)the Key R&D Project of Shaanxi Province(Nos.2023-YBGY-489 and 2023-YBGY-474)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(No.2022ZY2-JCYJ-01-07)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2022-JQ136)the Fundamental Research Funds for the Central Universities(No.5000210717)the Foundation(No.2019KF04)of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,College of Light Industry and Food Engineering,Guangxi University for financial support.
文摘The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers integrating non-volatility,mechanical robustness,superior ionic conductivity,and ultra-stretchability remains urgent and challenging.Here,we developed a healable,robust,and conductive elastomer via impregnating free ionic liquids(ILs)into the ILs-multigrafted poly(urethane-urea)(PUU)elastomer networks.A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained,which can lock the impregnated ILs through strong ionic interactions.In this system,the PUU matrix contributes outstanding mechanical properties,while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability,conductivity,as well as non-volatility and transparency.The fabricated ionic conductive elastomers show good conductivity(3.8×10^(-6) S·cm^(-1)),high mechanical properties,including tensile stress(4.64 MPa),elongation(1470%),and excellent healing ability(repairing efficiency of 90%after healing at room temperature for 12 h).Significantly,the conductive elastomers have excellent antifatigue properties,and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles.This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity,and further promote the development of mechanically adaptable intelligent sensors.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.
基金supported by the National Natural Science Foundation of China(52105576,22105106,22005151,62288102)the Open Project Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology(DMETKF2021010)+3 种基金the open research fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology(KFJJ20210201)the general project of Natural Science Research in Colleges and Universities of Jiangsu Province(21KJB460017)the Natural Science Foundation of Jiangsu Province of China(BK20210603)the Start-up Funding sponsored by Nanjing University of Posts and Telecommunications(NY221003,NY220124)。