期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers 被引量:1
1
作者 Xiaoyu Hu Linlin Mou Zunfeng Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期578-585,共8页
We prepare stretchable elastic electromagnetic interference(EMI) shielding and stretchable antenna for wireless strain sensing using an elastic composite comprising commercial steel wool as a conducting element. The p... We prepare stretchable elastic electromagnetic interference(EMI) shielding and stretchable antenna for wireless strain sensing using an elastic composite comprising commercial steel wool as a conducting element. The prepared elastic conductor shows anisotropic electrical properties in response to the external force. In the stretchable range, the electrical resistance abnormally decreases with the increase of tensile deformation. The EMI shielding effectiveness of the elastic conductor can reach above-30 d B under 80% tensile strain. The resonance frequency of the dipole antenna prepared by the elastic conductor is linearly correlated with the tensile strain, which can be used as a wireless strain sensor. The transmission efficiency is stable at about-15 d B when stretched to 50% strain, with attenuation less than 5%. The current research provides an effective solution for stretchable EMI shielding and wireless strain sensing integrated with signal transmission by an antenna. 展开更多
关键词 conductive elastomer electromagnetic shielding dipole antenna strain sensor
下载PDF
A Stretchable Ionic Conductive Elastomer for High-Areal-Capacity Lithium-Metal Batteries
2
作者 Kejia Li Zhenglu Zhu +4 位作者 Ruirui Zhao Haoran Du Xiaoqun Qi Xiaobin Xu Long Qie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期337-343,共7页
Developing high-areal-capacity and dendrite-free lithium(Li)anodes is of significant importance for the practical applications of the Li-metal secondary batteries.Herein,an effective strategy to stabilize the high-are... Developing high-areal-capacity and dendrite-free lithium(Li)anodes is of significant importance for the practical applications of the Li-metal secondary batteries.Herein,an effective strategy to stabilize the high-arealcapacity Li electrodeposition by modifying the Li metal with a stretchable ionic conductive elastomer(ICE)is demonstrated.The ICE layer prepared via an instant photocuring process shows a promising Li^(+)-ion conductivity at room temperature.When being used in Li-metal batteries,the thin ICE coating(~0.27μm)acts as both a stretchable constraint to minimize the Li loss and a protective layer to facilitate the uniform flux of Li ions.With this ICE-modifying strategy,the reversibility and cyclability of the Li anodes under high-areal-capacity condition in carbonate electrolyte are significantly improved,leading to a stable Li stripping/plating for 500 h at an ultrahigh areal capacity of 20 mAh cm^(-2)in commercial carbonate electrolyte.When coupled with industry-level thick LiFePO;electrodes(20.0 mg cm^(-2)),the cells with ICE-Li anodes show significantly enhanced rate and cycling capability. 展开更多
关键词 high areal capacity ionic conductive elastomer lithium anode lithium-metal battery protective layer
下载PDF
A healable, mechanically robust and ultrastretchable ionic conductive elastomer for durably wearable sensor
3
作者 Guoxian Zhang Chunmei Li +4 位作者 JiaoJun Tan Mingqi Wang Yafeng Ren Feijie Ge Qiuyu Zhang 《Nano Research》 SCIE EI CSCD 2024年第4期3369-3378,共10页
The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers inte... The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers integrating non-volatility,mechanical robustness,superior ionic conductivity,and ultra-stretchability remains urgent and challenging.Here,we developed a healable,robust,and conductive elastomer via impregnating free ionic liquids(ILs)into the ILs-multigrafted poly(urethane-urea)(PUU)elastomer networks.A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained,which can lock the impregnated ILs through strong ionic interactions.In this system,the PUU matrix contributes outstanding mechanical properties,while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability,conductivity,as well as non-volatility and transparency.The fabricated ionic conductive elastomers show good conductivity(3.8×10^(-6) S·cm^(-1)),high mechanical properties,including tensile stress(4.64 MPa),elongation(1470%),and excellent healing ability(repairing efficiency of 90%after healing at room temperature for 12 h).Significantly,the conductive elastomers have excellent antifatigue properties,and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles.This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity,and further promote the development of mechanically adaptable intelligent sensors. 展开更多
关键词 ionic conductive elastomers poly(urethane-urea)(PUU) ionic interactions centipede-like SELF-HEALING
原文传递
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina
4
作者 Chun-Yan Tang Lei Liu +3 位作者 Kai Ke Bo Yin Ming-Bo Yang Wei Yang 《Nano Materials Science》 EI CAS CSCD 2023年第3期312-318,共7页
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi... Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity. 展开更多
关键词 Thermoplastic polyurethane Carbon nanostructures ALUMINA conductive elastomer composites Stretchable strain sensor
下载PDF
基于预连接镍链的高应变敏感度动态可调电磁干扰屏蔽弹性体 被引量:1
5
作者 卞敬 周兴成 +5 位作者 周翔 马林峰 朱先军 李建民 刘淑娟 赵强 《Science China Materials》 SCIE EI CAS CSCD 2024年第2期629-641,共13页
具有动态可调电磁屏蔽性能的电磁干扰屏蔽材料备受关注,但其目前仍然存在制备复杂、厚度大、触发方式不便、调节范围窄等缺点.我们通过将尖刺镍微粒精确地分散到聚二甲基硅氧烷基体中形成预连接的链状结构,制备出了具有可开关电磁屏蔽... 具有动态可调电磁屏蔽性能的电磁干扰屏蔽材料备受关注,但其目前仍然存在制备复杂、厚度大、触发方式不便、调节范围窄等缺点.我们通过将尖刺镍微粒精确地分散到聚二甲基硅氧烷基体中形成预连接的链状结构,制备出了具有可开关电磁屏蔽性能的弹性体材料.弹性体在机械拉伸和释放过程中表现出连续和可逆的电磁干扰屏蔽性能.原始弹性体具有良好的阻抗匹配和低介电损耗,允许大部分电磁波通过.拉伸使预连接的短链彼此接触,在内部形成大量的微尺度导电网络,显著增强了电导损耗能力,实现了较强的电磁干扰屏蔽能力.此外,我们通过无线应变传感系统验证了智能电磁干扰屏蔽弹性体的应用潜力,证明了可穿戴智能电磁干扰屏蔽精确监测人体运动的可能性. 展开更多
关键词 adjustable electromagnetic interference shielding conductive elastomer electromagnetic sensing negative piezoresistivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部