The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo...The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields.展开更多
Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variet...Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variety of MOF-based solid-state structures towards diverse applications.However,the low conductivity of traditional MOFs extremely hinders their applications in electronic and electrochemical devices.The emerging conductive MOFs,generally possessing twodimensional layered structures,are endowed with both the structural merits of common MOFs and exceptional electronic/ionic conductivities.Besides,the selection and optimization of ligands and metal centers,as well as synthetic methods enormously affects the intrinsic conductivity of conductive MOFs.The distinctive crystal structures and superb conductivity promise their appealing applications in electrochemical energy-related fields.In the review,we mainly summarize representative crystal features,conducting mechanisms and recent advances in rational design and synthesis of conductive MOFs,along with their versatile applications as electrodes for electrochemical capacitors and rechargeable batteries,and as catalysts towards electrocatalysis.Finally,the involved challenges and future trends/prospects of the conductive MOFs for electrochemical energyrelated applications are further proposed.展开更多
Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MO...Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MOFs render retarded kinetics of polysulfides conversion, leading to insufficient utilization of sulfur. In comparison, conductive MOFs(c-MOFs) show great potential for promoting polysulfides transformation due to superb electronic conductivity. In this work, a nickel-catecholates based c-MOF, NiHHTP(HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), is designed to regulate surface chemistry of self-supported carbon paper for advanced Li-S batteries. Taking advantage of the porous structure and high conductivity, the as-prepared Ni-HHTP is conducive to synergising strengthening the chemisorption of polysulfides and accelerating the reaction kinetics in Li-S batteries, significantly mitigating the polysulfides diffusion from the non-encapsulated sulfur cathode, therefore promoting polysulfides transformation in Li-S batteries. This work points out a promising modification strategy for developing advanced sulfur cathode in Li-S batteries.展开更多
It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,densit...It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,density functional theory(DFT)calculations were conducted to systematically investigate a series of TMN_(x)O_(4-x)-HTT(TM=Fe,Co,Ni,Ru,Rh,Pd,Ir and Pt;HTT=hexahydroxy tetraazanaphthotetraphene)analogs of two-dimensional(2D)conductive metal-organic frameworks(MOFs)as potential electrocatalysts for the HER,OER and ORR.The thermodynamic and electrochemical stability simulations suggest that these designed catalysts are stable.Remarkably,CoO_(4)-HTT,RhN_(3)O_(1)-HTT and IrN3O1-HTT are predicted to be the most promising catalysts for the HER,OER and ORR,respectively,surpassing the catalytic activity of corresponding benchmark catalysts.The volcano plots were established based on the scaling relationship of adsorption Gibbs free energy of intermediates.The results reveal that regulating combinations of metal active centers and local coordination environments could effectively balance the interaction strength between intermediates and catalysts,thus achieving optimal catalytic activity.Our findings not only opt for the promising HER/OER/ORR electrocatalysts but also guide the design of efficient electrocatalysts based on 2D MOFs materials.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure.Here,human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonid...The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure.Here,human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment.Various metal-organic frameworks were screened for their attachment to lenses,loading with brimonidine,and drug-release properties.Opti-mized therapeutic ocular lenses conjugated with MIL-101(Cr)frameworks maintain optical transparency and power.Coating of lenses with MIL-101(Cr)nanoparticles reduced brimonidine washout with tears and ensured a gradual and localized release of the drug into the eyeball through the cornea.The hybrid lenses provided a 4.5-fold better decrease in eye pressure,compared by area under the curve(AUC)value to a commercially available brimonidine tartrate solution.Therapeutic lenses did not induce any notable eye irritation or corneal damage in vivo.The newly devel-oped hybrid lenses are expected to provide a robust platform for the therapy and prevention of various ocular diseases.展开更多
Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorpt...Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorption energy(ΔEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory(DFT) calculations reveal that the interaction between MXene and MOF significantly increases the ΔEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g^(-1), outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg^(-1)and power density of 7600 W kg^(-1). The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performanc...In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from a-crystals toβ-crystals,as facilitated by the incorporation of the MOF.The synthesis conditions,including metal ion,concentration,and particle size of the MOF,were optimized to increase open-circuit voltage(VOC)and open-circuit current(I_(SC))of PVDF-based TENGs.In addition to high operational stability,mechanical robustness,and long-term reliability,the developed TENG consisting of PVDF incorporated with Co-MOF(Co-MOF@PVDF)achieved a VOC of 194 V and an I_(SC)of 18.8μA.Furthermore,the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system(GPS)device.The local position of the user in real-time through GPS was displayed on a mobile interface,powered by the battery charged through friction-induced electricity generation.展开更多
The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The applicatio...The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors.展开更多
Two-dimensional(2D)materials showcase great potentials in both fundamental research and technology development,thanks to their unique chemical and physical properties that are usually not available in corresponding bu...Two-dimensional(2D)materials showcase great potentials in both fundamental research and technology development,thanks to their unique chemical and physical properties that are usually not available in corresponding bulk counterparts.As an emerging class of 2D materials,2D conductive metal-organic frameworks(2D c-MOFs)exhibit the characteristics of pre-designable and tunable structures,excellent crystallinity,intrinsic porosity and superior conductivity.During the past decade,2D c-MOFs have been rapidly developed in electronics,sensors,energy storage devices,etc.In this review,the electrical,magnetic and quantum properties of 2D c-MOFs are surveyed in detail.Their applications in semiconductor,metal,superconductor,topological insulator and porous magnet are highlighted.We envision that the combination of 2D c-MOFs with quantum materials could evoke rich physics,flexible chemistry and potential applications in both electronics and spintronics.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22002107 and 21905202).
文摘The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(No.51772127,51772131,and 51802119)Taishan Scholars(No.ts201712050)+2 种基金Major Program of Shandong Province Natural Science Foundation(ZR2018ZB0317)Natural Science Doctoral Foundation of Shandong Province(ZR2018BEM018,ZR2019BB057)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong.
文摘Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variety of MOF-based solid-state structures towards diverse applications.However,the low conductivity of traditional MOFs extremely hinders their applications in electronic and electrochemical devices.The emerging conductive MOFs,generally possessing twodimensional layered structures,are endowed with both the structural merits of common MOFs and exceptional electronic/ionic conductivities.Besides,the selection and optimization of ligands and metal centers,as well as synthetic methods enormously affects the intrinsic conductivity of conductive MOFs.The distinctive crystal structures and superb conductivity promise their appealing applications in electrochemical energy-related fields.In the review,we mainly summarize representative crystal features,conducting mechanisms and recent advances in rational design and synthesis of conductive MOFs,along with their versatile applications as electrodes for electrochemical capacitors and rechargeable batteries,and as catalysts towards electrocatalysis.Finally,the involved challenges and future trends/prospects of the conductive MOFs for electrochemical energyrelated applications are further proposed.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0402802,2017YFA0206700)the National Natural Science Foundation of China (Grant Nos. 21776265, 51902304, and 52072358)+2 种基金the Natural Science Foundation of Anhui Province (Grant No.1908085ME122)the Fundamental Research Funds for the Central Universities (Grant No. Wk2060140026)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020106)。
文摘Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MOFs render retarded kinetics of polysulfides conversion, leading to insufficient utilization of sulfur. In comparison, conductive MOFs(c-MOFs) show great potential for promoting polysulfides transformation due to superb electronic conductivity. In this work, a nickel-catecholates based c-MOF, NiHHTP(HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), is designed to regulate surface chemistry of self-supported carbon paper for advanced Li-S batteries. Taking advantage of the porous structure and high conductivity, the as-prepared Ni-HHTP is conducive to synergising strengthening the chemisorption of polysulfides and accelerating the reaction kinetics in Li-S batteries, significantly mitigating the polysulfides diffusion from the non-encapsulated sulfur cathode, therefore promoting polysulfides transformation in Li-S batteries. This work points out a promising modification strategy for developing advanced sulfur cathode in Li-S batteries.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317).
文摘It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,density functional theory(DFT)calculations were conducted to systematically investigate a series of TMN_(x)O_(4-x)-HTT(TM=Fe,Co,Ni,Ru,Rh,Pd,Ir and Pt;HTT=hexahydroxy tetraazanaphthotetraphene)analogs of two-dimensional(2D)conductive metal-organic frameworks(MOFs)as potential electrocatalysts for the HER,OER and ORR.The thermodynamic and electrochemical stability simulations suggest that these designed catalysts are stable.Remarkably,CoO_(4)-HTT,RhN_(3)O_(1)-HTT and IrN3O1-HTT are predicted to be the most promising catalysts for the HER,OER and ORR,respectively,surpassing the catalytic activity of corresponding benchmark catalysts.The volcano plots were established based on the scaling relationship of adsorption Gibbs free energy of intermediates.The results reveal that regulating combinations of metal active centers and local coordination environments could effectively balance the interaction strength between intermediates and catalysts,thus achieving optimal catalytic activity.Our findings not only opt for the promising HER/OER/ORR electrocatalysts but also guide the design of efficient electrocatalysts based on 2D MOFs materials.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金Ministry of Science and Higher Education of the Russian Federation,Grant/Award Number:075-15-2024-536。
文摘The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure.Here,human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment.Various metal-organic frameworks were screened for their attachment to lenses,loading with brimonidine,and drug-release properties.Opti-mized therapeutic ocular lenses conjugated with MIL-101(Cr)frameworks maintain optical transparency and power.Coating of lenses with MIL-101(Cr)nanoparticles reduced brimonidine washout with tears and ensured a gradual and localized release of the drug into the eyeball through the cornea.The hybrid lenses provided a 4.5-fold better decrease in eye pressure,compared by area under the curve(AUC)value to a commercially available brimonidine tartrate solution.Therapeutic lenses did not induce any notable eye irritation or corneal damage in vivo.The newly devel-oped hybrid lenses are expected to provide a robust platform for the therapy and prevention of various ocular diseases.
基金financial support from the Science Foundation for Outstanding Young Scholars of Shandong Province (No. 2022HWYQ- 009)the Natural Science Foundation of Shandong Province (No. ZR2021QB201, No. YDZX2021001)the Qilu Young Scholars Program of Shandong University。
文摘Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorption energy(ΔEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory(DFT) calculations reveal that the interaction between MXene and MOF significantly increases the ΔEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g^(-1), outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg^(-1)and power density of 7600 W kg^(-1). The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2012855)
文摘In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from a-crystals toβ-crystals,as facilitated by the incorporation of the MOF.The synthesis conditions,including metal ion,concentration,and particle size of the MOF,were optimized to increase open-circuit voltage(VOC)and open-circuit current(I_(SC))of PVDF-based TENGs.In addition to high operational stability,mechanical robustness,and long-term reliability,the developed TENG consisting of PVDF incorporated with Co-MOF(Co-MOF@PVDF)achieved a VOC of 194 V and an I_(SC)of 18.8μA.Furthermore,the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system(GPS)device.The local position of the user in real-time through GPS was displayed on a mobile interface,powered by the battery charged through friction-induced electricity generation.
基金supported by the Czech Science Foundation(GACR No.2016124J)supported by the grant of Specific university researchgrant No.A2_FCHT_2022_056
文摘The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors.
基金supported by the National Key Research and Development Program of China(2017YFA0207500)the National Natural Science Foundation of China(51973153)the Natural Science Foundation of Tianjin City(17JCJQJC44600)。
文摘Two-dimensional(2D)materials showcase great potentials in both fundamental research and technology development,thanks to their unique chemical and physical properties that are usually not available in corresponding bulk counterparts.As an emerging class of 2D materials,2D conductive metal-organic frameworks(2D c-MOFs)exhibit the characteristics of pre-designable and tunable structures,excellent crystallinity,intrinsic porosity and superior conductivity.During the past decade,2D c-MOFs have been rapidly developed in electronics,sensors,energy storage devices,etc.In this review,the electrical,magnetic and quantum properties of 2D c-MOFs are surveyed in detail.Their applications in semiconductor,metal,superconductor,topological insulator and porous magnet are highlighted.We envision that the combination of 2D c-MOFs with quantum materials could evoke rich physics,flexible chemistry and potential applications in both electronics and spintronics.