The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistiv...The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistivity quantitatively,which eliminated the interference with conductivity evaluation brought by temperature variation.Finally,the analysis of temperature cycling test results proves that the changes of percolation network structure caused by temperature variation prompt the emergence of PTC of conductive asphalt concrete.展开更多
In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on t...In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on the n-+-InGaN contact layer by metal organic chemical vapor deposition(MOCVD) using H2O as an oxidizer at temperatures as low as 400 ℃ without any post-deposition annealing.It shows a high transparency(98%),low resistivity(510 -4 Ω·cm),and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer.A forward voltage of 2.82 V @ 20 mA was obtained.Most importantly,the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL(LED-Ⅲ),and by28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer(LED-Ⅱ),respectively.The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application.展开更多
A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilizati...A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.展开更多
Bipolar resistance switching characteristics are investigated in Cu/sputtered-HfO_2/Pt structure in the application of resistive random access memory(RRAM).The conduction mechanism of the structure is characterized ...Bipolar resistance switching characteristics are investigated in Cu/sputtered-HfO_2/Pt structure in the application of resistive random access memory(RRAM).The conduction mechanism of the structure is characterized to be SCLC conduction.The dependence of resistances in both high resistance state(HRS) and low resistance state(LRS) on the temperature and device area are studied.Then,the composition and chemical bonding state of Cu and Hf at Cu/HfO_2 interface region are analyzed by x-ray photoelectron spectroscopy(XPS).Combining the electrical characteristics and the chemical structure at the interface,a model for the resistive switching effect in Cu/HfO_2/Pt stack is proposed.According to this model,the generation and recovery of oxygen vacancies in the HfO_2 film are responsible for the resistance change.展开更多
Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the ant...Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.展开更多
Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of ther...Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of thermal convection resistance are analyzed. The results indicate that the equivalent thermal conduction resistance of PCHEs with unequal numbers of hot plates and cold plates are sensitive to the thermal convection resistance of hot side and cold side. Specifically, for case C which has unequal number of hot and cold channels, the maximum value of equivalent thermal conduction resistance can be 1.7-2.4 times the minimum value. The equivalent thermal conduction resistance is underestimated under the isothermal boundary. In addition, the non-uniformity of the lengths of all the heat flux lines determines the influence degree of thermal convection resistance on the equivalent thermal conduction resistance. For further investigation, Latin hypercube sampling method is adopted to generate a large number of design points for each PCHE configuration. Based on the sample data, mathematical correlations and artificial neural network(ANN) for prediction of equivalent thermal conduction resistance for each case are developed. The proposed correlations of equivalent thermal conduction resistance for each case have acceptable accuracy of prediction with a wide range covering general engineering applications. The ANN model can achieve much better prediction accuracy than the proposed correlations thus it is recommended in the cases that the prediction accuracy is considered as the priority need.展开更多
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties...Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS2) ribbons and the thermal contact resistance, with which the interracial thermal resistance between few-layer MoS2 and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS2 is around -30 W/(m K), while the estimated interracial thermal resistance is around -2 × 10 -6 m-2 K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interracial thermal resistance of different twodimensional (2D) heterojunctions.展开更多
The aim of this study was to develop conductive adhesive using silver nanowires prepared via solvothermal method as conductive fillers and epoxymodified organosilicone resin as matrix resin. Effect of the addition of ...The aim of this study was to develop conductive adhesive using silver nanowires prepared via solvothermal method as conductive fillers and epoxymodified organosilicone resin as matrix resin. Effect of the addition of silver nanowires/flakes on the conductive adhesive's electrical and mechanical properties was investigated. Compared with conventional conductive adhesive with silver flakes fillers, the percolation threshold of conductive adhesive with silver nanowires fillers is 10 % lower approximately. However, further rise of the content of silver nanowires has no obvious influence on improvement of the electrical conductivity of conductive adhesive. Both conductive and mechanical properties of conductive adhesive can be compatible by adding silver nanowires, which traditional silver conductive adhesives cannot reach.展开更多
This study investigated the resistive switching characteristics of the Ni/HfCVPt structure for nonvolatile memory application.The Ni/HfO_2/Pt device showed bipolar resistive switching(RS) without a forming process, ...This study investigated the resistive switching characteristics of the Ni/HfCVPt structure for nonvolatile memory application.The Ni/HfO_2/Pt device showed bipolar resistive switching(RS) without a forming process, and the formation and rupture of conducting filaments are responsible for the resistive switching phenomenon.In addition,the device showed some excellent memory performances,including a large on/off ratio(〉 3×10~5),very good data retention(〉 10~3 s @ 200℃) and uniformity of switching parameters.Considering these results,the Ni/HfO_2/Pt device has the potential for nonvolatile memory applications.展开更多
基金Funded by the National Natural Science Foundation of China(No.51178348)
文摘The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistivity quantitatively,which eliminated the interference with conductivity evaluation brought by temperature variation.Finally,the analysis of temperature cycling test results proves that the changes of percolation network structure caused by temperature variation prompt the emergence of PTC of conductive asphalt concrete.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204091,61404177,51402366,and U1201254)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2015B010132006)
文摘In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on the n-+-InGaN contact layer by metal organic chemical vapor deposition(MOCVD) using H2O as an oxidizer at temperatures as low as 400 ℃ without any post-deposition annealing.It shows a high transparency(98%),low resistivity(510 -4 Ω·cm),and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer.A forward voltage of 2.82 V @ 20 mA was obtained.Most importantly,the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL(LED-Ⅲ),and by28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer(LED-Ⅱ),respectively.The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application.
基金Funded by the National Natural Science Foundation of China(No.51403082)
文摘A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.
基金Project supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.155-QP-2016)the Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCQ01032)the 111 Project of China(Grant No.B08040)
文摘Bipolar resistance switching characteristics are investigated in Cu/sputtered-HfO_2/Pt structure in the application of resistive random access memory(RRAM).The conduction mechanism of the structure is characterized to be SCLC conduction.The dependence of resistances in both high resistance state(HRS) and low resistance state(LRS) on the temperature and device area are studied.Then,the composition and chemical bonding state of Cu and Hf at Cu/HfO_2 interface region are analyzed by x-ray photoelectron spectroscopy(XPS).Combining the electrical characteristics and the chemical structure at the interface,a model for the resistive switching effect in Cu/HfO_2/Pt stack is proposed.According to this model,the generation and recovery of oxygen vacancies in the HfO_2 film are responsible for the resistance change.
基金Funded by National Natural Science Funds of China(No.51173141)Natural Science Funds of Hubei Province,China(No.2014CFC1152)+1 种基金Science and Technology Research Program of Department of Education of Hubei Province,China(No.Q20122305)Funds of Hubei Key Laboratory of Automotive Power Train and Electronic Control(No.ZDK1201405)
文摘Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51536007)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51721004)+1 种基金the Program of Introducing Talents of Discipline to Universities Project(Grant No.B16038)the Fundamental Research Funds for the Central Universities。
文摘Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of thermal convection resistance are analyzed. The results indicate that the equivalent thermal conduction resistance of PCHEs with unequal numbers of hot plates and cold plates are sensitive to the thermal convection resistance of hot side and cold side. Specifically, for case C which has unequal number of hot and cold channels, the maximum value of equivalent thermal conduction resistance can be 1.7-2.4 times the minimum value. The equivalent thermal conduction resistance is underestimated under the isothermal boundary. In addition, the non-uniformity of the lengths of all the heat flux lines determines the influence degree of thermal convection resistance on the equivalent thermal conduction resistance. For further investigation, Latin hypercube sampling method is adopted to generate a large number of design points for each PCHE configuration. Based on the sample data, mathematical correlations and artificial neural network(ANN) for prediction of equivalent thermal conduction resistance for each case are developed. The proposed correlations of equivalent thermal conduction resistance for each case have acceptable accuracy of prediction with a wide range covering general engineering applications. The ANN model can achieve much better prediction accuracy than the proposed correlations thus it is recommended in the cases that the prediction accuracy is considered as the priority need.
基金supported by the National Natural Science Foundation of China(11674245 and 11334007)Shanghai Committee of Science and Technology in China(17142202100 and 17ZR1447900)supported by A*STAR Pharos Funding from the Science and Engineering Research Council of Singapore(Grant No.152 72 00015)
文摘Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS2) ribbons and the thermal contact resistance, with which the interracial thermal resistance between few-layer MoS2 and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS2 is around -30 W/(m K), while the estimated interracial thermal resistance is around -2 × 10 -6 m-2 K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interracial thermal resistance of different twodimensional (2D) heterojunctions.
基金financially supported by the Shenzhen Innovation and Technology Commission under the Strategic Emerging Industries Development Project(No.ZDSY2012061209 4418467)
文摘The aim of this study was to develop conductive adhesive using silver nanowires prepared via solvothermal method as conductive fillers and epoxymodified organosilicone resin as matrix resin. Effect of the addition of silver nanowires/flakes on the conductive adhesive's electrical and mechanical properties was investigated. Compared with conventional conductive adhesive with silver flakes fillers, the percolation threshold of conductive adhesive with silver nanowires fillers is 10 % lower approximately. However, further rise of the content of silver nanowires has no obvious influence on improvement of the electrical conductivity of conductive adhesive. Both conductive and mechanical properties of conductive adhesive can be compatible by adding silver nanowires, which traditional silver conductive adhesives cannot reach.
文摘This study investigated the resistive switching characteristics of the Ni/HfCVPt structure for nonvolatile memory application.The Ni/HfO_2/Pt device showed bipolar resistive switching(RS) without a forming process, and the formation and rupture of conducting filaments are responsible for the resistive switching phenomenon.In addition,the device showed some excellent memory performances,including a large on/off ratio(〉 3×10~5),very good data retention(〉 10~3 s @ 200℃) and uniformity of switching parameters.Considering these results,the Ni/HfO_2/Pt device has the potential for nonvolatile memory applications.