The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pai...The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.展开更多
Novel silver/silver molybdate(Ag/Ag2MoO4) composites with surface plasmon resonance(SPR)-enhanced photocatalytic performance were successfully fabricated via a facile one-pot hydrothermal route with the presence o...Novel silver/silver molybdate(Ag/Ag2MoO4) composites with surface plasmon resonance(SPR)-enhanced photocatalytic performance were successfully fabricated via a facile one-pot hydrothermal route with the presence of sodium dodecyl sulfate(SDS) in this study.The as prepared silver/silver molybdate(Ag/Ag2MoO4) composites were systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and ultraviolet-visible diffuse reflectance absorption spectroscopy(DRS) in order to investigate their crystal structure,morphology and optical property as well.The photocatalytic activities of the composites were subsequently evaluated by their ability to degrade rhodamine B(RhB) under visible-light irradiation.Varies of controlled experiments were then carefully operated to gain a deep insight into the assembling of Ag/Ag2MoO4composites.It was found that preparation conditions such as pH,reaction time,and the amount of surfactant played important roles in the formation of composites with octahedral microstructures.And the composite obtained at 160 ℃ using 0.5 g of sodium dodecyl sulfate exhibited the highest photocatalytic performance under visible-light irradiation.Capture experiments were also conducted to clarify the function of different active species generated on the surface of Ag/Ag2MoO4during the photocatalytic process,in which both holes and ·OH radicals were found to play crucial role in photocatalytic removal of RhB under visible light irradiation.A possible photocatalytic mechanism of Ag/Ag2MoO4 was finally proposed on the basis of all the results to explain the higher photocatalytic activity of the octahedral Ag/Ag2MoO4 composites.It was inferred that the photoinduced "hot" electrons can quickly transfer from the Ag NPs to the conduction band of Ag2MoO4 and react with oxygen and H2O to generate a large quality of active radicals such as ·OH and ·O2^- because of the SPR effects.Besides,this SPR effects of Ag nanoparticles deposited on the surface of Ag2MoO4 can not only dramatically amplify its light absorption,especially in the visible region,but also promote the separation of photoexcited electron-hole pairs and effectively decrease electron-hole recombination.展开更多
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.
基金supported by Fundamental Research Funds for the Central Universities (2662014BQ061, 2015PY120, 2015PY047, 2016PY088)the National Natural Science Foundation of China (51572101, 21502059, 21607047)~~
文摘Novel silver/silver molybdate(Ag/Ag2MoO4) composites with surface plasmon resonance(SPR)-enhanced photocatalytic performance were successfully fabricated via a facile one-pot hydrothermal route with the presence of sodium dodecyl sulfate(SDS) in this study.The as prepared silver/silver molybdate(Ag/Ag2MoO4) composites were systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and ultraviolet-visible diffuse reflectance absorption spectroscopy(DRS) in order to investigate their crystal structure,morphology and optical property as well.The photocatalytic activities of the composites were subsequently evaluated by their ability to degrade rhodamine B(RhB) under visible-light irradiation.Varies of controlled experiments were then carefully operated to gain a deep insight into the assembling of Ag/Ag2MoO4composites.It was found that preparation conditions such as pH,reaction time,and the amount of surfactant played important roles in the formation of composites with octahedral microstructures.And the composite obtained at 160 ℃ using 0.5 g of sodium dodecyl sulfate exhibited the highest photocatalytic performance under visible-light irradiation.Capture experiments were also conducted to clarify the function of different active species generated on the surface of Ag/Ag2MoO4during the photocatalytic process,in which both holes and ·OH radicals were found to play crucial role in photocatalytic removal of RhB under visible light irradiation.A possible photocatalytic mechanism of Ag/Ag2MoO4 was finally proposed on the basis of all the results to explain the higher photocatalytic activity of the octahedral Ag/Ag2MoO4 composites.It was inferred that the photoinduced "hot" electrons can quickly transfer from the Ag NPs to the conduction band of Ag2MoO4 and react with oxygen and H2O to generate a large quality of active radicals such as ·OH and ·O2^- because of the SPR effects.Besides,this SPR effects of Ag nanoparticles deposited on the surface of Ag2MoO4 can not only dramatically amplify its light absorption,especially in the visible region,but also promote the separation of photoexcited electron-hole pairs and effectively decrease electron-hole recombination.