期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Effect of Cone Angle on the Hydraulic Characteristics of Globe Control Valve
1
作者 LIN Zhe WANG Huijie +3 位作者 SHANG Zhaohui CUI Baoling ZHU Chongxi ZHU Zuchao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期641-648,共8页
Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature re... Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve. 展开更多
关键词 globe control valve cone angle numerical simulation experiment internal and external features
下载PDF
Determination of a Drawing Die's Cone Angle at a Small Compression Ratio Based on the Upper Bound Theory
2
作者 YANG Xu-dong JIN Liang-liang 《International Journal of Plant Engineering and Management》 2011年第4期215-220,共6页
The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and f... The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and friction power of contact surface Wf were calculated using the upper bound theory with a reasonable and movement permitted velocity field according to the related characteristics. Then the relation between half cone angle and unit drawing force was obtained and it was compared with the result with the spherical velocity field. The relative error of the two near the optimal value is only about 0. 26% through comparing with existing calculated results. Finally, in an ABAQUS environment the finite element modal of the wire rod with 12. 5 mm diameter in first drawing pass was established and the axial drawing force in different cone angles was obtained using the ABAQUS/Explicit explicit integration method. The finite element method (FEM) results verify the results using the upper bound theory and this indicated that the velocity field and the relation between half cone angle and unit drawing force reasonable. 展开更多
关键词 upper bound theory drawing die cone angle FEM ABAQUS
下载PDF
Theoretical Calculations and Experimental Verification for the Pumping Effect Caused by the Dynamic Micro-tapered Angle 被引量:6
3
作者 CAI Yufei ZHANG Jianhui +2 位作者 ZHU Chunling HUANG Jun JIANG Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期615-623,共9页
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance an... The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures. 展开更多
关键词 atomization nozzle/diffuser flow dynamic cone angle piezoelectric pump
下载PDF
The Non-Equivalence of Pyramids and Their Pseudo-Cones: Important New Insights
4
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2022年第4期1158-1166,共9页
The simulation of indentations with so called “equivalent” pseudo-cones for decreasing computer time is challenged. The mimicry of pseudo-cones having equal basal surface and depth with pyramidal indenters is exclud... The simulation of indentations with so called “equivalent” pseudo-cones for decreasing computer time is challenged. The mimicry of pseudo-cones having equal basal surface and depth with pyramidal indenters is excluded by basic arithmetic and trigonometric calculations. The commonly accepted angles of so called “equivalent” pseudo-cones must not also claim equal depth. Such bias (answers put into the questions to be solved) in the historical values of the generally used half-opening angles of pseudo-cones is revealed. It falsifies all simulations or conclusions on that basis. The enormous errors in the resulting hardness H<sub>ISO</sub> and elastic modulus E<sub>r-ISO</sub> values are disastrous not only for the artificial intelligence. The straightforward deduction for possibly ψ-cones (ψ for pseudo) without biased depths’ errors for equal basal surface and equal volume is reported. These ψ-cones would of course penetrate much more deeply than the three-sided Berkovich and cube corner pyramids (r a/2), and their half-opening angles would be smaller than those of the respective pyramids (reverse with r > a/2 for four-sided Vickers). Also the unlike forces’ direction angles are reported for the more sideward and the resulting downward directions. They are reflected by the diameter of the parallelograms with length and off-angle from the vertical axis. Experimental loading curves before and after the phase-transition onsets are indispensable. Mimicry of ψ-cones and pyramids is also quantitatively excluded. All simulations on their bases would also be dangerously invalid for industrial and solid pharmaceutical materials. 展开更多
关键词 Basic Mathematics Extreme Errors False cone angles INDENTATION Unphysical cone Models for Pyramids Undue Simulations
下载PDF
Spray Characteristics of Non-Circular Nozzle in Air-Assisted Injection System
5
作者 Lihua Ye Wenjing Liu +1 位作者 Jie Li Aiping Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期61-72,共12页
In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-... In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-0.6 MPa and the spray volume of 1000-5000 mL/h. Elliptical nozzle and triangular nozzle are classified as non-circular geometries. The spray cone angle was measured by processing the spray image captured by a CCD camera. The measured spray cone angles of the circular nozzles were analyzed, and the axis switching phenomenon of minor plane of elliptical nozzle was found during the test. Among the three shapes of nozzles, the elliptical nozzle had the largest spray cone angle, and the triangular nozzle had the smallest. The velocity field obtained depended on the PIV system. The results show that for axial velocity, elliptical orifice spray has greater kinetic energy and smaller droplet size under the same working parameters. Compared with the circular and elliptical nozzles, triangular orifice reached maximum spray velocity the fastest, but its velocity decay was the fastest. For radial velocity, away from the axis, the spray velocity of the elliptical orifice was less affected by the injection parameters, and the velocity was less than that of circular orifice and triangle orifice. Increasing air pressure will weaken radial propagation. The increase of liquid spraying rate had no remarkable effect on the increase of spraying rate. The results of particle size analysis show that the particle size of the non-circular orifice is reduced compared with that of the circular orifice, which promotes the breakup of droplets to a certain extent and enhances the atomization effect. 展开更多
关键词 non-circular nozzle air-assisted injection system PIV spray cone angle velocity field
下载PDF
STUDY ON CONTACT CHARACTER OF ROLLING CONE WORM GEARING AND ITS PARAMETER REASONABLE OPTION
6
作者 Ding Xilun Beijing University of Aeronautics and Astronautics Yu Xingbo Jilin Institute of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1997年第4期76-81,共3页
A new type of worm gearing, rolling cone enveloping worm gearing possessing high virtues of transmission, is presented. With theoretical deduction, numerical calculations and parameter analyses, the effect of prime pa... A new type of worm gearing, rolling cone enveloping worm gearing possessing high virtues of transmission, is presented. With theoretical deduction, numerical calculations and parameter analyses, the effect of prime parameters to the character of instantaneous contact line are obtained. The ranges of the main parameters are selected reasonably. It provides the theoretical basis for the structure design and application of this new type of worm gearing. 展开更多
关键词 Rolling cone Induced normal curvature Contact line Lubricating angle
全文增补中
Model Test Study of Dynamic Ice Force on Compliant Conical Structures 被引量:6
7
作者 黄焱 史庆增 宋安 《China Ocean Engineering》 SCIE EI 2007年第1期11-22,共12页
To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-ti... To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-time breaking. From 2005 to 2006, this type of ice failure was studied through more groups of tests. The tests show that two-time breaking is the typical failure of ice before steep conical structures, and is controlled by other factors at the same time, such as ice speed and the angle of the cone. 展开更多
关键词 model test compliant cortical structure two-time breaking ice speed cone angle
下载PDF
A new energy-absorbing bolt used for large deformation control of tunnel surrounding rock 被引量:1
8
作者 Junbao Wang Wei Liu +3 位作者 Zhanping Song Lingfeng Li Shijin Feng Yun Cheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1031-1043,共13页
In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the ... In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors. 展开更多
关键词 Energy-absorbing bolt Static tensile test cone angle Constant resistance Limit ring
下载PDF
Novel algorithm of gait planning of hydraulic quadruped robot to avoid foot slidingand reduce impingement 被引量:1
9
作者 马立玲 杨超峰 +1 位作者 王立鹏 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期91-99,共9页
In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed i... In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait. 展开更多
关键词 landing angle gait planning foot trajectory friction cone sliding impingement
下载PDF
Theoretical performance simulation of a high pressure agro-forestry swirl nozzle
10
作者 A.Taiwo K.Oje 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2012年第4期31-38,共8页
Equations of dynamic systems in droplet distribution at high pressure and boundary value flows in the swirl chamber of a swirl nozzle were used in conjunction with momentum equations of forces on moving curved vanes t... Equations of dynamic systems in droplet distribution at high pressure and boundary value flows in the swirl chamber of a swirl nozzle were used in conjunction with momentum equations of forces on moving curved vanes to develop mathematical models.A computer program in C++language was developed and used to simulate the effect of some flow and geometric parameters,including flow rate,pressure and swirl chamber diameter,on the spray performance of a high pressure agro-forestry swirl nozzle.Each of the three performance parameters of axial flow rate,spray cone angle and output discharge(or performance)coefficient were studied as a function of any two combinations of the nozzle supply pressure,exit orifice diameter and swirl chamber diameter.The study established that the spray cone angle of the discharge flow pattern varied from the minimum value of 40°for a swirl chamber diameter of 90 mm to 220°for 40 mm as the exit orifice diameter varied from the minimum value of 0.5 mm to 4.0 mm.The simulated nozzle output discharge coefficient could be varied from 0.98,when the nozzle supply pressure was 400 kPa to the minimum value of 0.001 at any of the other six simulated nozzle supply pressure values of 200,250,300,350,450 and 500 kPa by varying the exit orifice diameter from 0.5 mm to 4.0 mm.The pattern of variation of the simulated nozzle discharge coefficient values were similar to those obtained by measurement during the validation exercise in the laboratory although their sensitivities to the independent variables were different.The results indicated that the range of nozzle discharge coefficient of 0.80 to 0.98 required for a well designed high pressure agro-forestry swirl nozzle has been simulated.With the successful development of the C++computer program,a useful tool that will cut down on the rigor encountered and time spent by nozzle designers and evaluators during nozzle development process has been developed in the study. 展开更多
关键词 swirl-nozzle simulation AGRO-FORESTRY performance coefficient spray cone angle swirl chamber diameter
原文传递
Effect of nozzle inlet parameters on the dry granulation atomization process of Si_(3)N_(4) ceramic bearing balls
11
作者 Dongling Yu Xiaohui Zhang +2 位作者 Hongbin Luo Dahai Liao Nanxing Wu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第6期182-205,共24页
In this paper,the atomization characteristics of Si3N4 ceramic dry granulation affect the performance of Si3N4 ceramic bearing balls.In order to improve the dry granulation characteristics and the comprehensive perfo... In this paper,the atomization characteristics of Si3N4 ceramic dry granulation affect the performance of Si3N4 ceramic bearing balls.In order to improve the dry granulation characteristics and the comprehensive performance of Si3N4 ceramic bearing balls,the atomization mechanism of the spinning nozzle used for Si3N4 dry granulation was studied in detail.The interaction between air and binder in the pressure-swirl nozzle is analyzed based on VOF method,the modified realizable k−εturbulence model is used to simulate the flow field inside and outside the pressure-swirl nozzle,the effects of nozzle inlet parameters including the number of tangential inlets and the deflection angle of tangential inlets on the binder volume fraction,velocity distribution and pressure distribution are analyzed.The results show that when the number of tangential inlets increases from 1 to 4,the swirl strength of gas–liquid two-phase in the nozzle increases,the mean diameter of air core increases from 1.51 mm to 2.01 mm,and the spray cone angle increases from 18.5◦to 26.4◦.Besides,when the deflection angle of tangential inlet increases from 0◦to 15◦,the swirl strength of gas–liquid two-phase in the nozzle with the deflection angle of tangential inlet of 10◦is the largest,and the mean diameter of air core and spray cone angle is 3.04 mm and 30.7◦,respectively.Based on the atomization experiment platform of the electric control fuel system,the mean diameter of air core and spray cone angle are measured,the micromorphology of Si3N4 particles is observed,which verifies the correctness of numerical simulation.When the Si3N4 particles are prepared by dry granulation,taking the atomization performance of nozzle into consideration,the pressure-swirl nozzle with 4 tangential inlets and 10◦deflection angle should be selected. 展开更多
关键词 Si_(3)N_(4)ceramic bearing balls pressure-swirl nozzle VOF method inlet parameters air core spray cone angle
原文传递
6°攻角圆锥边界层中的高频不稳定性实验研究
12
作者 牛海波 易仕和 +2 位作者 刘小林 郑文鹏 陆小革 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第9期12-22,共11页
本文在马赫6静风洞中对6◦攻角圆锥边界层中的高频不稳定性进行了研究,实验的单位雷诺数是6:90×10^(6)m^(−1).使用Kulite和PCB脉动压力传感器测量了圆锥壁面的高频脉动压力信号,并使用基于纳米示踪的平面激光散射(NPLS)技术对三维... 本文在马赫6静风洞中对6◦攻角圆锥边界层中的高频不稳定性进行了研究,实验的单位雷诺数是6:90×10^(6)m^(−1).使用Kulite和PCB脉动压力传感器测量了圆锥壁面的高频脉动压力信号,并使用基于纳米示踪的平面激光散射(NPLS)技术对三维边界层中的相干结构进行测量.结果表明,在圆锥背风面存在低频和高频的扰动波信号,特征频率分别为10-20 kHz和120-140 kHz.由NPLS结果可知,低频信号对应行进横流波结构,高频信号位于行进横流波结构的顶部,为行进横流波的二次不稳定性.另外,使用PCB传感器阵列对高频不稳定性的频率和幅值增长特性进行了研究,得到了高频不稳定性的幅值增长云图. 展开更多
关键词 Hypersonic flow High-frequency instability Power spectrum density cone at angle of attack
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部