期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Class of Cone Sobolev Spaces on the Half-line
1
作者 刘晓春 陈化 《Northeastern Mathematical Journal》 CSCD 2000年第3期257-260,共4页
关键词 cone sobolev space Mellin symbol discrete conormal asymptotics
下载PDF
EXISTENCE OF NODAL SOLUTION FOR SEMI-LINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT ON SINGULAR MANIFOLD 被引量:2
2
作者 刘晓春 梅媛 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期543-555,共13页
In this article, we prove that semi-linear elliptic equations with critical cone Sobolev exponents possess a nodal solution.
关键词 cone sobolev space critical exponent nodal solution
下载PDF
Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators 被引量:2
3
作者 CHEN Hua QIAO RongHua +1 位作者 LUO Peng XIAO DongYuan 《Science China Mathematics》 SCIE 2014年第11期2235-2246,共12页
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2... Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2. 展开更多
关键词 cone Laplacian cone sobolev spaces Dirichlet eigenvalues upper bounds of eigenvalues lower bounds of eigenvalues
原文传递
OPERATORS ON CORNER MANIFOLDS WITH EXIT TO INFINITY
4
作者 D. Calvo B. W. Schulze 《Journal of Partial Differential Equations》 2006年第2期147-192,共46页
We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y. The typical operators A are corner degenerate in ... We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y. The typical operators A are corner degenerate in a specific way. They are described Cmodulo 'lower order terms') by a principal symbolic hierarchy σ(A) = (σψ (A), σ∧ CA), σ∧ (A)), where σψ is the interior symbol and σ∧(A) (y, η), (y, η) ∈ T*Y/0, the Coperator-valued) edge symbol of 'first generation', cf. [1]. The novelty here is the edge symbol σ∧ of 'second generation', parametrised by (z, ζ) ∈ T*Z / 0, acting on weighted Sobolev spaces on the infinite cone with base W. Since such a cone has edges with exit to infinity, the calculus has the problem to understand the behaviour of operators on a manifold of that kind. We show the continuity of corner-degenerate operators in weighted edge Sobolev spaces, and we investigate the ellipticity of edge symbols of second generation. Starting from parameter-dependent elliptic families of edge operators of first generation, we obtain the Fredholm property of higher edge symbols on the corresponding singular infinite model cone. 展开更多
关键词 Operators on manifolds with edge and conical exit to infinity sobolev spaces with double weights on singular cones parameter-dependent ellipticity edge and corner symbols.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部