Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
In this paper, we obtain some new characterizations of the range symmetric matrices in the Minkowski Space M by using the Block representation of the matrices. These characterizations are used to establish some result...In this paper, we obtain some new characterizations of the range symmetric matrices in the Minkowski Space M by using the Block representation of the matrices. These characterizations are used to establish some results on the partial ordering of the range symmetric matrices with respect to the Minkowski adjoint. Further, we establish some results regarding the partial ordering of m-projectors with respect to the Minkowski adjoint and manipulate them to characterize some sets of range symmetric elements in the Minkowski Space M. All the results obtained in this paper are an extension to the Minkowski space of those given by A. Hernandez, et al. in [The star partial order and the eigenprojection at 0 on EP matrices, Applied Mathematics and Computation, 218: 10669-10678, 2012].展开更多
Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature)....All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature). The paper considers ways of disordering intermetallic phases, in relation to the ordering energy and diffusivities, and some properties of partially ordered intermetallic phases (including mechanical properties) The kinetics of re-ordering of disordered starting material will be examined,including sluggishly ordering phases (which can be aided by concurrent irradiation). The circumstances under which a partially disordered intermetallic phase may transform into an amorphous form will be outlined.展开更多
In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric...In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric space. Our theorems generalized the theorem in [1] and extends the many more recent results in such spaces.展开更多
Salbutamol,which increases the muscle mass and decreases the adipose tissue,is misused as nutrient repartitioning agent in the livestock.The novelty of this work is the determination of salbutamol in the livestock mea...Salbutamol,which increases the muscle mass and decreases the adipose tissue,is misused as nutrient repartitioning agent in the livestock.The novelty of this work is the determination of salbutamol in the livestock meat via new bonded-phases bearing eight derivatives of p-tert-calix[4]arene in partial-cone conformation.The new synthesized bonded-phases were characterized and optimized.The bonding interactions of solute and stationary-phases were examined and the main interactions were reported.The salbutamol levels in six samples of livestock meat were analyzed and the results reveal that for the best bonded-phases,the limit of detection(LOD) and limit of quantitation(LOQ) were 0.02 and 0.06 μg/mL,respectively.展开更多
In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduc...In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.展开更多
Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the...Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.展开更多
This paper establishes an ordering contraction mapping principle for increasing mapping in partial ordering metric spaces, and applies it to prove the existence and uniqueness of fixed point for some nonlinear operato...This paper establishes an ordering contraction mapping principle for increasing mapping in partial ordering metric spaces, and applies it to prove the existence and uniqueness of fixed point for some nonlinear operators controlled by a linear operator and phi-concave operator in a partial ordering Banach space. Therefore, this two results are unified.展开更多
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
文摘In this paper, we obtain some new characterizations of the range symmetric matrices in the Minkowski Space M by using the Block representation of the matrices. These characterizations are used to establish some results on the partial ordering of the range symmetric matrices with respect to the Minkowski adjoint. Further, we establish some results regarding the partial ordering of m-projectors with respect to the Minkowski adjoint and manipulate them to characterize some sets of range symmetric elements in the Minkowski Space M. All the results obtained in this paper are an extension to the Minkowski space of those given by A. Hernandez, et al. in [The star partial order and the eigenprojection at 0 on EP matrices, Applied Mathematics and Computation, 218: 10669-10678, 2012].
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
文摘All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature). The paper considers ways of disordering intermetallic phases, in relation to the ordering energy and diffusivities, and some properties of partially ordered intermetallic phases (including mechanical properties) The kinetics of re-ordering of disordered starting material will be examined,including sluggishly ordering phases (which can be aided by concurrent irradiation). The circumstances under which a partially disordered intermetallic phase may transform into an amorphous form will be outlined.
文摘In recent times the fixed point results in partially ordered metric spaces has greatly developed. In this paper we prove common fixed point results for multivalued and singlevalued mappings in partially ordered metric space. Our theorems generalized the theorem in [1] and extends the many more recent results in such spaces.
基金Supported by the Project of Islamic Azad University(Shahreza Branch)the Iran Nanotechnology Initiative Council
文摘Salbutamol,which increases the muscle mass and decreases the adipose tissue,is misused as nutrient repartitioning agent in the livestock.The novelty of this work is the determination of salbutamol in the livestock meat via new bonded-phases bearing eight derivatives of p-tert-calix[4]arene in partial-cone conformation.The new synthesized bonded-phases were characterized and optimized.The bonding interactions of solute and stationary-phases were examined and the main interactions were reported.The salbutamol levels in six samples of livestock meat were analyzed and the results reveal that for the best bonded-phases,the limit of detection(LOD) and limit of quantitation(LOQ) were 0.02 and 0.06 μg/mL,respectively.
文摘In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.
基金Supported by the National Natural Science Foundation of China(No.11101302 and No.11471241)
文摘Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.
文摘This paper establishes an ordering contraction mapping principle for increasing mapping in partial ordering metric spaces, and applies it to prove the existence and uniqueness of fixed point for some nonlinear operators controlled by a linear operator and phi-concave operator in a partial ordering Banach space. Therefore, this two results are unified.