Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actua...Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction.展开更多
In order to meet the requirements of the machining process of cone screw of the Opposed Conical High Pressure Seawater Hydraulic Pump,this work describes the design process to determine the theoretical profile of the ...In order to meet the requirements of the machining process of cone screw of the Opposed Conical High Pressure Seawater Hydraulic Pump,this work describes the design process to determine the theoretical profile of the tool,starting from the surface equation of the cone screw. Along with the expression of the theoretical tool profile,the equation of the contact line between the cone screw and the tool is established based on the coordinate transformation theory and the space meshing theory,as well as the surface equation and the position relationship between the screw and the tool during processing. By solving the contact condition based on the method of numerical discretization analysis via MATLAB,the contact line trajectory and theoretical tool profile curve are derived.The feasibility of the proposed method is verified by an example of tool profile design for machining the screw.展开更多
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c...In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.展开更多
The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric pr...The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric principle. With the use of differential geometry theory, the curve is proved to be with geometric feature of convex curve. It is referred to as Isometric Polygonal Curve (IPC), because that is a kind of convex curve on which the distance between any parallel tangent lines is equal. Isometric Polygonal Profile (IPP) or Isometric Polygonal Cone Profile (IPCP) or Isometric Polygonal Topless Cone (IPTC) is formed with the IPC and straight line as generating curve. But the machining and measuring of the IPCP are so inconvenient that it has little value. Keeping in mind the characteristic of the IPP and IPTC, this paper puts forward the program method of CNC grinding machining. Isometric polygonal profile connection is a kind of polygonal profile connection. It has the superiority over keys (prismatic key & spline etc), and can be suit for the situations such as high rotative velocity, large torque, high precision, and small fixed room and vibration. Nowadays, some countries such as America, Russia, German and Switzerland applied CNC machining to the machining of polygon surface coupling parts, which makes their applications in machine productions such as motor engine, heavy machine increase day by day. But reports about concrete machining technology of isometric polygonal profile and programming of CNC machining program are very few. CNC grinding of the IPP and IPTC is one kind of the precision machining technology. It is of great importance to the popularization of the IPP and IPTC connection. From the forming mechanism, we can see that the machining and measuring of the IPP and IPTC are convenient, and therefore they have the value of the popularization. But the machining and measuring of the IPCP are so inconvenient that it has little value. In the programming the CNC grinding of the IPP and IPTC, it is more reasonable to calculate the coordinate of node according to the approaching method of equal error arc. According to the method of CNC grinding mentioned above to design the grinding machine, the structure is simple and of economical and practical.展开更多
A support vector machine(SVM)model has been developed for the prediction of liquefaction susceptibility as a classification problem,which is an imperative task in earthquake engineering.This paper examines the potenti...A support vector machine(SVM)model has been developed for the prediction of liquefaction susceptibility as a classification problem,which is an imperative task in earthquake engineering.This paper examines the potential of SVM model in prediction of liquefaction using actual field cone penetration test(CPT)data from the 1999 Chi-Chi,Taiwan earthquake.The SVM,a novel learning machine based on statistical theory,uses structural risk minimization(SRM)induction principle to minimize the error.Using cone resistance(q_(c))and cyclic stress ratio(CSR),model has been developed for prediction of liquefaction using SVM.Further an attempt has been made to simplify the model,requiring only two parameters(q_(c)and maximum horizontal acceleration a_(max)),for prediction of liquefaction.Further,developed SVM model has been applied to different case histories available globally and the results obtained confirm the capability of SVM model.For Chi-Chi earthquake,the model predicts with accuracy of 100%,and in the case of global data,SVM model predicts with accuracy of 89%.The effect of capacity factor(C)on number of support vector and model accuracy has also been investigated.The study shows that SVM can be used as a practical tool for prediction of liquefaction potential,based on field CPT data.展开更多
文摘Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction.
基金National Natural Science Foundation of China(No.51075008)
文摘In order to meet the requirements of the machining process of cone screw of the Opposed Conical High Pressure Seawater Hydraulic Pump,this work describes the design process to determine the theoretical profile of the tool,starting from the surface equation of the cone screw. Along with the expression of the theoretical tool profile,the equation of the contact line between the cone screw and the tool is established based on the coordinate transformation theory and the space meshing theory,as well as the surface equation and the position relationship between the screw and the tool during processing. By solving the contact condition based on the method of numerical discretization analysis via MATLAB,the contact line trajectory and theoretical tool profile curve are derived.The feasibility of the proposed method is verified by an example of tool profile design for machining the screw.
文摘In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.
文摘The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric principle. With the use of differential geometry theory, the curve is proved to be with geometric feature of convex curve. It is referred to as Isometric Polygonal Curve (IPC), because that is a kind of convex curve on which the distance between any parallel tangent lines is equal. Isometric Polygonal Profile (IPP) or Isometric Polygonal Cone Profile (IPCP) or Isometric Polygonal Topless Cone (IPTC) is formed with the IPC and straight line as generating curve. But the machining and measuring of the IPCP are so inconvenient that it has little value. Keeping in mind the characteristic of the IPP and IPTC, this paper puts forward the program method of CNC grinding machining. Isometric polygonal profile connection is a kind of polygonal profile connection. It has the superiority over keys (prismatic key & spline etc), and can be suit for the situations such as high rotative velocity, large torque, high precision, and small fixed room and vibration. Nowadays, some countries such as America, Russia, German and Switzerland applied CNC machining to the machining of polygon surface coupling parts, which makes their applications in machine productions such as motor engine, heavy machine increase day by day. But reports about concrete machining technology of isometric polygonal profile and programming of CNC machining program are very few. CNC grinding of the IPP and IPTC is one kind of the precision machining technology. It is of great importance to the popularization of the IPP and IPTC connection. From the forming mechanism, we can see that the machining and measuring of the IPP and IPTC are convenient, and therefore they have the value of the popularization. But the machining and measuring of the IPCP are so inconvenient that it has little value. In the programming the CNC grinding of the IPP and IPTC, it is more reasonable to calculate the coordinate of node according to the approaching method of equal error arc. According to the method of CNC grinding mentioned above to design the grinding machine, the structure is simple and of economical and practical.
文摘A support vector machine(SVM)model has been developed for the prediction of liquefaction susceptibility as a classification problem,which is an imperative task in earthquake engineering.This paper examines the potential of SVM model in prediction of liquefaction using actual field cone penetration test(CPT)data from the 1999 Chi-Chi,Taiwan earthquake.The SVM,a novel learning machine based on statistical theory,uses structural risk minimization(SRM)induction principle to minimize the error.Using cone resistance(q_(c))and cyclic stress ratio(CSR),model has been developed for prediction of liquefaction using SVM.Further an attempt has been made to simplify the model,requiring only two parameters(q_(c)and maximum horizontal acceleration a_(max)),for prediction of liquefaction.Further,developed SVM model has been applied to different case histories available globally and the results obtained confirm the capability of SVM model.For Chi-Chi earthquake,the model predicts with accuracy of 100%,and in the case of global data,SVM model predicts with accuracy of 89%.The effect of capacity factor(C)on number of support vector and model accuracy has also been investigated.The study shows that SVM can be used as a practical tool for prediction of liquefaction potential,based on field CPT data.