为了强化理论知识的应用,利用锥度量型空间中自映射,讨论常数K的范围得出公共不动点的存在性和唯一性问题,证明了一个新的公共不动点定理.把锥度量型空间看作是锥度量空间的推广,在空间里,证明了4个映射的某些不动点定理.所得结论延伸...为了强化理论知识的应用,利用锥度量型空间中自映射,讨论常数K的范围得出公共不动点的存在性和唯一性问题,证明了一个新的公共不动点定理.把锥度量型空间看作是锥度量空间的推广,在空间里,证明了4个映射的某些不动点定理.所得结论延伸和推广了文献中熟悉的相容性的一些论断.所有结论都在一致锥的背景下得到证明,且不需要假设函数的连续性.文章结果改进和发展了Aleksandar S Cvetkovi的结果.展开更多
In this paper, some new existence and uniqueness of points of coincidence of weakly compatible pair of mappings is obtained, which does not satisfy continuity and commutativity. The conditions are weaker than the usua...In this paper, some new existence and uniqueness of points of coincidence of weakly compatible pair of mappings is obtained, which does not satisfy continuity and commutativity. The conditions are weaker than the usual conditions in cone metric spaces.展开更多
文摘为了强化理论知识的应用,利用锥度量型空间中自映射,讨论常数K的范围得出公共不动点的存在性和唯一性问题,证明了一个新的公共不动点定理.把锥度量型空间看作是锥度量空间的推广,在空间里,证明了4个映射的某些不动点定理.所得结论延伸和推广了文献中熟悉的相容性的一些论断.所有结论都在一致锥的背景下得到证明,且不需要假设函数的连续性.文章结果改进和发展了Aleksandar S Cvetkovi的结果.
基金Supported by the Fundamental Research Fund of Sichuan Provincial Science and Technology Department(2012JYZ019)
文摘In this paper, some new existence and uniqueness of points of coincidence of weakly compatible pair of mappings is obtained, which does not satisfy continuity and commutativity. The conditions are weaker than the usual conditions in cone metric spaces.