Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and f...Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and relia...National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory.展开更多
The structure of a rotor has full impact on the performance of cone-shaped helical pumps. Numerical simulation and experimental tests are applied to get pressure, velocity and flow of a cone-shaped helical pump, and e...The structure of a rotor has full impact on the performance of cone-shaped helical pumps. Numerical simulation and experimental tests are applied to get pressure, velocity and flow of a cone-shaped helical pump, and explores flow condition of blood in artificial blood pump. Rotors with four different tapers of artificial pump are designed. The flow condition of blood at the entrance, near the front diffuser, near the rotor, near the rear diffuser and at the exit, the pressure difference between entrance and exit and flow of artificial blood pump with different taper rotors are simulated, and then the influence rules of rotor taper on the performance of cone-shaped helical pump are revealed. In order to verify the correctness of theoretical analysis, rotors with three different tapers are manufactured, physical model of artificial blood pump are built, and then the actual lift and flow of blood pump with different rotors are measured respectively. The results show that taper of rotor increases, the circumfluence of blood near the front and rear diffuser decreases, the blood flows more smoothly, the energy consumption is less, and then the guide role of blade is greater. The blood at the exit of blood pump flows along the axial direction steadily. As taper of rotor increases, the pressure difference between the entrance and exit and the flow of blood pump increase subsequently. The flow condition of blood and performance of blood pump with No.3 rotor are the best. The proposed research analyzes the influence of rotor taper on performance of blood pump quantitatively, and provides the theoretical reference for the design and improving of cone-shaped helical pump.展开更多
Using the rigid visco-plastic Finite Element Method (FEM), the process offorging for long cone-shaped posts made of aluminum alloys was modeled and the correspondingdistributions of the field variables were obtained b...Using the rigid visco-plastic Finite Element Method (FEM), the process offorging for long cone-shaped posts made of aluminum alloys was modeled and the correspondingdistributions of the field variables were obtained based on considering aberrance of grids, dynamicboundary conditions, non-stable process, coupled thermo-mechanical behavior and other specialproblems. The difficulties in equipment selection and die analysis caused by the long cone shape ofpost, as well as by pressure calculation were solved.展开更多
Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect t...Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect the quality of later data processing and interpretation. Compared with multiturn coils, the new conical source has low mutual inductance and short turn-off time. Based on the superposition principle, we use Hankel transform and numerical filtering method for forward modelling of the conical source field in the layered-media and explore TEM characteristics excited by this source. We apply improved damped least square inversion to integrated transient electromagnetic(TEM) data. We first invert the induced voltage into similar resistivity and apparent depth, and then use the inverted results as input parameters in the initial model and transform the apparent resistivity data into the frequency domain. Then, damped least square inversion is performed in the frequency domain using the initial model. Subsequently, we use automated model building to search for the extremes and inflection points in the resistivity–depth data that are treated as critical layer parameters. The inversion of theoretical and observed data suggests that the method modifies the resistivity and depth and yields a model of the underground layers.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41564001 and 41572185)the Natural Science Foundation of Jiangxi Province(No.20151BAB203045)
文摘Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
基金This work was financially supported by the Innovation Fund from Chinese Academy of Sciences(Grant No.CXJJ-17-M130)the Research Fund of the State Key Laboratory of Robotics(Gant No.Y91Z0904).
文摘National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory.
基金Support by the National Natural Science Foundation of China(No.51705445)Natural Science Foundation of Hebei Province of China(No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-201714)
文摘The structure of a rotor has full impact on the performance of cone-shaped helical pumps. Numerical simulation and experimental tests are applied to get pressure, velocity and flow of a cone-shaped helical pump, and explores flow condition of blood in artificial blood pump. Rotors with four different tapers of artificial pump are designed. The flow condition of blood at the entrance, near the front diffuser, near the rotor, near the rear diffuser and at the exit, the pressure difference between entrance and exit and flow of artificial blood pump with different taper rotors are simulated, and then the influence rules of rotor taper on the performance of cone-shaped helical pump are revealed. In order to verify the correctness of theoretical analysis, rotors with three different tapers are manufactured, physical model of artificial blood pump are built, and then the actual lift and flow of blood pump with different rotors are measured respectively. The results show that taper of rotor increases, the circumfluence of blood near the front and rear diffuser decreases, the blood flows more smoothly, the energy consumption is less, and then the guide role of blade is greater. The blood at the exit of blood pump flows along the axial direction steadily. As taper of rotor increases, the pressure difference between the entrance and exit and the flow of blood pump increase subsequently. The flow condition of blood and performance of blood pump with No.3 rotor are the best. The proposed research analyzes the influence of rotor taper on performance of blood pump quantitatively, and provides the theoretical reference for the design and improving of cone-shaped helical pump.
文摘Using the rigid visco-plastic Finite Element Method (FEM), the process offorging for long cone-shaped posts made of aluminum alloys was modeled and the correspondingdistributions of the field variables were obtained based on considering aberrance of grids, dynamicboundary conditions, non-stable process, coupled thermo-mechanical behavior and other specialproblems. The difficulties in equipment selection and die analysis caused by the long cone shape ofpost, as well as by pressure calculation were solved.
基金supported by the National Natural Science Foundation of China(Nos.41564001,41674133,41572185,and 41604104)the Distinguished Young Talent Foundation of Jiangxi Province(No.20171BCB23068)
文摘Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect the quality of later data processing and interpretation. Compared with multiturn coils, the new conical source has low mutual inductance and short turn-off time. Based on the superposition principle, we use Hankel transform and numerical filtering method for forward modelling of the conical source field in the layered-media and explore TEM characteristics excited by this source. We apply improved damped least square inversion to integrated transient electromagnetic(TEM) data. We first invert the induced voltage into similar resistivity and apparent depth, and then use the inverted results as input parameters in the initial model and transform the apparent resistivity data into the frequency domain. Then, damped least square inversion is performed in the frequency domain using the initial model. Subsequently, we use automated model building to search for the extremes and inflection points in the resistivity–depth data that are treated as critical layer parameters. The inversion of theoretical and observed data suggests that the method modifies the resistivity and depth and yields a model of the underground layers.