期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Influence of Confined Concrete Models on the Seismic Response of RC Frames
1
作者 Hüseyin Bilgin Bredli Plaku 《Structural Durability & Health Monitoring》 EI 2024年第3期197-222,共26页
In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified K... In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to thepre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in thecurrent building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelasticresponse of the building frame is modelled by considering the plastic hinges formed on each beam and columnelement for different concrete classes and stirrups spacings. The models are subjected to non-linear static analyses.The differences between confined concrete models are comparatively investigated at both reinforced concretemember and system levels. Based on the results of the comparative analysis, it is revealed that the column behaviouris mostly influenced by the choice of model, due to axial loads and confinement effects, while the beams areless affected, and also it is observed that the differences exhibited in the moment-curvature response of columncross-sections do not significantly affect the overall behaviour of the global system. This highlights the critical roleof model selection relative to the concrete strength and stirrup spacing of the member. 展开更多
关键词 Non-linear static analysis moment-curvature relationships plastic hinges concrete confinement models seismic action
下载PDF
Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels 被引量:4
2
作者 Bei Jiang Zhongxin Xin +4 位作者 Xiufeng Zhang Yusong Deng Mingzi Wang Shidong Li Wentao Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期829-841,共13页
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic... Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled. 展开更多
关键词 High-stress tunnel confined concrete arch Section shape Mechanical properties Design method
下载PDF
Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone
3
作者 Nooshin G.AMIRABAD Farshid J.ALAEE Meysam JALALI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第10期1585-1598,共14页
Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-bri... Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-brittle behavior of concrete,FRP-reinforced concrete(FRP-RC)beams,even with flexural failure,do not fail in a ductile manner.Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones,the present study proposes using a precast confined concrete block(PCCB)in the compression zone to improve the ductility of the beams.A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions.The control beam failed due to shear,and the PCCBs exhibited different confinements and perforations.The goal was to find an appropriate PCCB for use in the compression zone of the beams,which not only improved the ductility but also changed the failure mode of the beams from shear to flexural.Among the employed blocks,a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam.The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction. 展开更多
关键词 DUCTILITY four-point bending test glass fiber-reinforced polymer precast confined concrete block
原文传递
A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming 被引量:2
4
作者 Hui LIU Ming-hua HE +2 位作者 Yu-qi LUAN Jia GUO Lu-lu LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第12期856-866,共11页
OpenSees is a well-recognized open source platform with high compatibility,and it has a well-developed fiber element method to cope with nonlinear structural analysis.Fiber reinforced polymer(FRP)confined concrete can... OpenSees is a well-recognized open source platform with high compatibility,and it has a well-developed fiber element method to cope with nonlinear structural analysis.Fiber reinforced polymer(FRP)confined concrete can effectively improve the seismic performance of concrete structures.However,sophisticated constitutive models for FRP confined concrete are not available in the current version of OpenSees.In this paper,after reviewing several typical FRP confined concrete constitutive models,a modified constitutive model for FRP confined concrete in circular sections was proposed based on Lam and Teng(2003)’s model with four main modifications including the determination of FRP rupture strain,ultimate condition,envelope shape,and hysteretic rules.To embed the proposed constitutive model into OpenSees is a practical solution for engineering simulation.Hence,the secondary development of OpenSees New UserMat was briefly demonstrated and a set of critical steps were depicted in a flow chart.Finally,with the numerical implementations of a series of FRP confined concrete members covering a wide range of load cases,FRP confinement types and geometric properties,the utility and accuracy of the proposed model compared with Lam and Teng(2003)’s model and new material secondary development in OpenSees were well validated. 展开更多
关键词 FRP confined concrete Constitutive model OPENSEES User material Secondary development
原文传递
Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces 被引量:1
5
作者 Nasim S. Moghaddasi B Zhang Yunfeng Hu Xiaobin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期91-105,共15页
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp... This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand. 展开更多
关键词 BRACE composite confined concrete glass-fiber-reinforced polymer frame nonlinear analysis RETROFIT seismic
下载PDF
Strength and Deformation of Axially Loaded Fiber-Reinforced Polymer Sheet Confined Concrete Columns
6
作者 李静 钱稼茹 蒋剑彪 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第2期130-137,共8页
Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon f... Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon fiber sheet (CFS) and five column specimens were hybrid confined with both CFS and glass fiber sheet (GFS). The influence of aspect ratio, FS material, initial axial force ratio, and FS confine-ment degree on the strength and deformation of columns were studied. Based on the experimental results, the equations of complete stress-strain curve of CFS confined concrete are proposed. These equations are suitable for the nonlinear analysis of square and rectangular section columns. Suggestions of applying FS to confine concrete columns are presented. 展开更多
关键词 fiber-reinforced polymer sheet (FS) confined concrete column axial compressive force strength and deformation equation of complete stress-strain curve
原文传递
Experimental and Numerical Studies on Sea Sand Concrete Filled Stainless Steel Tube with Inner FRP Tube Subjected to Axial Compression
7
作者 ZENG Lan YU Wen-lan +2 位作者 MO Zi-yong HUANG Shi-qing YUAN Hong 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期272-287,共16页
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular... Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios. 展开更多
关键词 sea-sand concrete(SSC) confined concrete column fibre-reinforced polymer(FRP)tube stainless steel tube axial compression
下载PDF
A Review of Fibre Reinforced Polymer (FRP) Reinforced Concrete Composite Column Members Modelling and Analysis Techniques 被引量:1
8
作者 Mahdi Hosseini Bingyu Jian +8 位作者 Haitao Li Dong Yang Ziang Wang Zixian Feng Feng Shen Jian Zhang Rodolfo Lorenzo Ileana Corbi Ottavia Corbi 《Journal of Renewable Materials》 SCIE EI 2022年第12期3243-3262,共20页
The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have b... The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads.However,the efect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modeing and oversimplification of the model.This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method.An effort has been made to examine the usage of FRP materials in column applications in exist-ing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications. 展开更多
关键词 FRP confined concrete column FRP tube FRP jackets CFRP GFRP stress-strain models
下载PDF
Confinement properties of circular concrete columns wrapped with prefabricated textile-reinforced fine concrete shells
9
作者 Qin ZHANG Qiao-Chu YANG +2 位作者 Xiang-Lin GU Yong JIANG Hai-Yang ZHU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第10期1554-1570,共17页
This paper proposes an innovative column composed of a core column(including both reinforced concrete(RC)and plain concrete(PC)columns)and a prefabricated textile-reinforced fine concrete(TRC)shell.To study the confin... This paper proposes an innovative column composed of a core column(including both reinforced concrete(RC)and plain concrete(PC)columns)and a prefabricated textile-reinforced fine concrete(TRC)shell.To study the confinement properties of TRC shells on this novel type of concrete column,20 circular specimens,including 12 PC columns and 8 RC columns,were prepared for axial compressive tests.Four key parameters,including the column size,reinforcing ratio of the carbon textile,concrete strength,and stirrup spacing,were evaluated.The results indicated that the compressive properties of the columns were improved by increasing the reinforcing ratio of the textile layers.In the case of TRC-confined PC columns,the maximum improvement in the peak load was 56.3%,and for TRC-confined RC columns,the maximum improvement was 60.2%.Based on the test results,an analytical model that can be used to calculate the stress–strain curves of prefabricated TRC shell-confined concrete columns has been proposed.The calculated curves predicted by the proposed model agreed well with the test results. 展开更多
关键词 textile-reinforced fine concrete prefabricated shell confined concrete column confinement properties stress–strain relationship
原文传递
Comprehensive experimental database and analysis of circular concrete-filled double-skin tube stub columns:A review
10
作者 Hongyuan TANG Hongfei TAN +2 位作者 Sisi GE Jieyu QIN Yuzhuo WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1830-1848,共19页
A concrete-filled double-skin tube(CFDST)is a new type of composite material.Experimental studies have been conducted to investigate the axial compression behavior of CFDST members for approximately 30 years.This pape... A concrete-filled double-skin tube(CFDST)is a new type of composite material.Experimental studies have been conducted to investigate the axial compression behavior of CFDST members for approximately 30 years.This paper provides a review of the status of axial compression bearing capacity tests conducted on circular CFDST stub columns as well as a summary of test data for 165 circular CFDST stub columns reported in 22 papers.A relatively complete high-quality test database is established.Based on this database,the main factors affecting the axial compression bearing capacity of the CFDST stub columns are analyzed.The prediction accuracy and robustness of an existing theoretical prediction model,which is a data-driven model,are evaluated,and a numerical simulation of the axial compression bearing capacity of the CFDST stub columns is conducted.In addition,the differences between the basic theory and experimental results of various models are compared,and the possible sources of prediction errors are analyzed.The current model for predicting the axial compression capacity of CFDST stub columns cannot simultaneously satisfy the requirements of high accuracy and confidence,and the stress independency assumption introduced in the test is not valid.The main error source in the theoretical prediction model is the non-simultaneous consideration of the effects of the void ratio and inner steel tube. 展开更多
关键词 CFDST bearing capacity model confined concrete model test database
原文传递
Development of deep neural network model to predict the compressive strength of FRCM confined columns
11
作者 Khuong LE-NGUYEN Quyen Cao MINH +1 位作者 Afaq AHMAD Lanh Si HO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第10期1213-1232,共20页
The present study describes a reliability analysis of the strength model for predicting concrete columns confinement influence with Fabric-Reinforced Cementitious Matrix(FRCM).through both physical models and Deep Neu... The present study describes a reliability analysis of the strength model for predicting concrete columns confinement influence with Fabric-Reinforced Cementitious Matrix(FRCM).through both physical models and Deep Neural Network model(artificial neural network(ANN)with double and triple hidden layers).The database of 330 samples collected for the training model contains many important parameters,i.e.,section type(circle or square),corner radius rc,unconfined concrete strength fco,thickness nt,the elastic modulus of fiber Ef,the elastic modulus of mortar Em.The results revealed that the proposed ANN models well predicted the compressive strength of FRCM with high prediction accuracy.The ANN model with double hidden layers(APDL-1)was shown to be the best to predict the compressive strength of FRCM confined columns compared with the ACI design code and five physical models.Furthermore,the results also reveal that the unconfined compressive strength of concrete,type of fiber mesh for FRCM,type of section,and the corner radius ratio,are the most significant input variables in the efficiency of FRCM confinement prediction.The performance of the proposed ANN models(including double and triple hidden layers)had high precision with R higher than 0.93 and RMSE smaller than 0.13,as compared with other models from the literature available. 展开更多
关键词 FRCM deep neural networks confinement effect strength model confined concrete
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部