Marine sediment is the primary sink of microplastics and is an indicator of pollution levels.However,although there are well-developed detection methods,detection is rarely focused on lowmicrometer-sized particles,mai...Marine sediment is the primary sink of microplastics and is an indicator of pollution levels.However,although there are well-developed detection methods,detection is rarely focused on lowmicrometer-sized particles,mainly due to technique limitations.In this study,a simplifi ed process omitting digestion procedures was developed to pretreat microplastics obtained from marine sediment and was coupled with micro-Raman spectroscopy to identify microplastics.Based on the overall analysis of the characteristic peak assignments,a Raman spectral reference library was constructed for 18 types of plastic.In addition,the eff ects of the measurement parameters were systematically described.Field research was then conducted to validate the developed process and investigate microplastic contamination in Huiquan Bay,Qingdao,China.This simplifi ed process could retain the original appearance of microparticles and accomplish the detection of<500μm-sized microplastics in environmental samples.Microplastics in the size range of 10-150μm accounted for 76%of all microplastics,and 56%of the total particles was particles smaller than 50μm.Polypropylene(42%)and polyethylene(20%)were predominant components of the particles.In particular,polypropylene particles smaller than 10μm were identifi ed in marine sediment.This work demonstrates that Raman spectroscopy is not only an eff ective tool for detecting environmental particles but also highly applicable for identifying particles extracted from marine sediment.展开更多
As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN thr...As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN through depth profiling using 405-,532-,and 638-nm wavelength lasers.The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution.Based on the shift of the E2 H mode of the GaN epitaxial layer,the interfacial stress for different types of GaN is characterized and calculated.The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate.Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.展开更多
The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement...The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement systems. The foundation of these measurements relies on high-quality confocal Raman spectroscopy of skin and the robust numerical analysis of water profiles, which allow for accurate determination of SC thickness. These measurements are useful for studying intrinsic skin hydration profiles at different body sites and for determining hydration properties of skin related to topically applied materials. While the use of high-quality in-vivo Raman instrumentation has become routine and its use for SC thickness measurement widely reported, there is lack of agreement as to the best method of computing SC thickness values from Raman water profiles. Several methods have been proposed and are currently in use for such computations, but none of these methods has been critically evaluated. The work reported in this paper describes a new method for the determination of stratum corneum thickness from in-vivo confocal Raman water profiles. The method represents a consensus approach to the problem, which was found necessary to apply in order to properly model and quantify the large diversity of water profile types encountered in typical in-vivo Raman water measurement. The methodology is evaluated for performance using three criteria: 1) frequency of minimum fitting error on modeling to a standard numerical function;2) frequency of minimum model error for consensus vs. individual SC thickness values;and 3) correlation with reflectance confocal microscopy (RCM) values for SC thickness. The correlation study shows this approach to be a reasonable replacement for the more tedious and time-consuming RCM method with R2 = 0.68 and RMS error = 3.7 microns over the three body sites tested (cheek, forearm and leg).展开更多
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
The potential of Confocal micro Raman spectroscopy in the quantitative analysis of pesticide(Chlorpyrifos,Omethoate)residues on orange surface is investigated in this work.Quantitative analysis models were established...The potential of Confocal micro Raman spectroscopy in the quantitative analysis of pesticide(Chlorpyrifos,Omethoate)residues on orange surface is investigated in this work.Quantitative analysis models were established by partial least squares(PLS)using different preprocessing methods(Smoothing,First derivative,MSC,Baseline)for pesticide residues.For pesticide resi-dues,the higher correlation coefficients(r)is 0.972 and 0.943,the root mean square error of prediction(RMSEP)is 2.05%and 2.36%,respectively.It is therefore clear that Confocal micro-Raman spectroscopy techniques enable rapid,nondestructive and reliable measurements,so Raman spectrometry appears to be a prormising tool for pesticide residues.展开更多
Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwri...Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.展开更多
Raman spectroscopy is a spectroscopic technique based on the inelastic scattering of monochromatic light that represents the molecular composition of the interrogated volume to provide a direct molecular fingerprint. ...Raman spectroscopy is a spectroscopic technique based on the inelastic scattering of monochromatic light that represents the molecular composition of the interrogated volume to provide a direct molecular fingerprint. Several investigations have revealed that confocal Raman spectroscopy can differentiate non-dysplastic Barrett’s esophagus from esophageal high-grade dysplasia and adenocarcinoma with high sensitivity and specificity. An automated on-line Raman spectral diagnostic system has made it possible to use Raman spectroscopy to guide accurate target biopsy instead of multiple random forceps-biopsies, this novel system is expected to improve in vivo precancerous diagnosis and tissue characterization of Barrett’s esophagus.展开更多
To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected o...To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.展开更多
In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to ...In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to develop a systematic means of investigation of the morphology and the thermal conductivity of Porous silicon oxidized or no. The thermal conductivity is studied according to the parameters of anodization and fraction of silicon oxidized. Thermal transport in the porous silicon layers is limited by its porous nature and the blocking of transport in the silicon skeleton what supports its use in the thermal sensors.展开更多
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy...The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.展开更多
基金Supported by the Laboratory for Marine Geology,Qingdao Pilot National Laboratory for Marine Science and Technology(No.MGQNLMTD201904)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606401)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSW-DQC004)the Young Taishan Scholars Program(No.tsqn201909158)。
文摘Marine sediment is the primary sink of microplastics and is an indicator of pollution levels.However,although there are well-developed detection methods,detection is rarely focused on lowmicrometer-sized particles,mainly due to technique limitations.In this study,a simplifi ed process omitting digestion procedures was developed to pretreat microplastics obtained from marine sediment and was coupled with micro-Raman spectroscopy to identify microplastics.Based on the overall analysis of the characteristic peak assignments,a Raman spectral reference library was constructed for 18 types of plastic.In addition,the eff ects of the measurement parameters were systematically described.Field research was then conducted to validate the developed process and investigate microplastic contamination in Huiquan Bay,Qingdao,China.This simplifi ed process could retain the original appearance of microparticles and accomplish the detection of<500μm-sized microplastics in environmental samples.Microplastics in the size range of 10-150μm accounted for 76%of all microplastics,and 56%of the total particles was particles smaller than 50μm.Polypropylene(42%)and polyethylene(20%)were predominant components of the particles.In particular,polypropylene particles smaller than 10μm were identifi ed in marine sediment.This work demonstrates that Raman spectroscopy is not only an eff ective tool for detecting environmental particles but also highly applicable for identifying particles extracted from marine sediment.
基金the National Natural Science Foundation of China(Grant Nos.51575389 and 51761135106)the National Key Research and Development Program of China(Grant No.2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the‘111’Project of the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN through depth profiling using 405-,532-,and 638-nm wavelength lasers.The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution.Based on the shift of the E2 H mode of the GaN epitaxial layer,the interfacial stress for different types of GaN is characterized and calculated.The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate.Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.
文摘The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement systems. The foundation of these measurements relies on high-quality confocal Raman spectroscopy of skin and the robust numerical analysis of water profiles, which allow for accurate determination of SC thickness. These measurements are useful for studying intrinsic skin hydration profiles at different body sites and for determining hydration properties of skin related to topically applied materials. While the use of high-quality in-vivo Raman instrumentation has become routine and its use for SC thickness measurement widely reported, there is lack of agreement as to the best method of computing SC thickness values from Raman water profiles. Several methods have been proposed and are currently in use for such computations, but none of these methods has been critically evaluated. The work reported in this paper describes a new method for the determination of stratum corneum thickness from in-vivo confocal Raman water profiles. The method represents a consensus approach to the problem, which was found necessary to apply in order to properly model and quantify the large diversity of water profile types encountered in typical in-vivo Raman water measurement. The methodology is evaluated for performance using three criteria: 1) frequency of minimum fitting error on modeling to a standard numerical function;2) frequency of minimum model error for consensus vs. individual SC thickness values;and 3) correlation with reflectance confocal microscopy (RCM) values for SC thickness. The correlation study shows this approach to be a reasonable replacement for the more tedious and time-consuming RCM method with R2 = 0.68 and RMS error = 3.7 microns over the three body sites tested (cheek, forearm and leg).
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
基金supported by National Science and Technology Support Program of China (31160250,61178036)Ganpo excellence project 555 Talent Plan of Jiangxi Province (2011-64)Center of Photoelctric Detection Technology Engineering of Jiangxi Province (2012-155).
文摘The potential of Confocal micro Raman spectroscopy in the quantitative analysis of pesticide(Chlorpyrifos,Omethoate)residues on orange surface is investigated in this work.Quantitative analysis models were established by partial least squares(PLS)using different preprocessing methods(Smoothing,First derivative,MSC,Baseline)for pesticide residues.For pesticide resi-dues,the higher correlation coefficients(r)is 0.972 and 0.943,the root mean square error of prediction(RMSEP)is 2.05%and 2.36%,respectively.It is therefore clear that Confocal micro-Raman spectroscopy techniques enable rapid,nondestructive and reliable measurements,so Raman spectrometry appears to be a prormising tool for pesticide residues.
基金This work was supported by the National Natural Science Foundation of China(No.51575389,51761135106)the National Key Research and Development Program of China(2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.
文摘Raman spectroscopy is a spectroscopic technique based on the inelastic scattering of monochromatic light that represents the molecular composition of the interrogated volume to provide a direct molecular fingerprint. Several investigations have revealed that confocal Raman spectroscopy can differentiate non-dysplastic Barrett’s esophagus from esophageal high-grade dysplasia and adenocarcinoma with high sensitivity and specificity. An automated on-line Raman spectral diagnostic system has made it possible to use Raman spectroscopy to guide accurate target biopsy instead of multiple random forceps-biopsies, this novel system is expected to improve in vivo precancerous diagnosis and tissue characterization of Barrett’s esophagus.
基金This work was supported by the National Key R&D Program of China(2019YFC1605500,2018YFF01011700)the National Natural Science Foundation of China(21973111)+1 种基金Guangxi Natural Science Foundation(2017GXNSFAA198029)Scientific Development Fund of Guangxi Academy of Sciences(2018YFJ 403).
文摘To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.
文摘In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to develop a systematic means of investigation of the morphology and the thermal conductivity of Porous silicon oxidized or no. The thermal conductivity is studied according to the parameters of anodization and fraction of silicon oxidized. Thermal transport in the porous silicon layers is limited by its porous nature and the blocking of transport in the silicon skeleton what supports its use in the thermal sensors.
基金the Natural Science Foundation of Guangdong Province of China (Grant No. 05005926)the Plan Project of Science and Technology of Guangzhou City (Grant No. 2007J1-C0011)Open Foundation of the Key Laboratory of Laser Life Science,Ministry of Education of China(2007-05)
文摘The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.