Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a...Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a generalization of the results in the case of the minimal surfaces.In addition,we give an estimate of the Gauss curvature for the K-quasiconfomal harmonic surfaces whose generalized Gauss map is ramified over a set of hyperplanes.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(500421360)supported by NNSF of China(11571049,12071047)+1 种基金supported by NNSF of China(11971182)NSF of Fujian Province of China(2019J01066)。
文摘Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a generalization of the results in the case of the minimal surfaces.In addition,we give an estimate of the Gauss curvature for the K-quasiconfomal harmonic surfaces whose generalized Gauss map is ramified over a set of hyperplanes.